SAT II Math I : Mathematical Relationships

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : Indirect Proportionality

\displaystyle z varies directly with two times \displaystyle y and varies indirectly with three times \displaystyle x. When \displaystyle x=8, 

\displaystyle y = 4  

and \displaystyle z=2.

 

What is the value of \displaystyle z when \displaystyle x=3 and \displaystyle y=6? Round to the nearest tenth if needed.

Possible Answers:

\displaystyle 12.2

\displaystyle 8.7

\displaystyle 8

\displaystyle 10

\displaystyle 10.4

Correct answer:

\displaystyle 8

Explanation:

In order to solve for \displaystyle z, first set up the variation equation for \displaystyle x, \displaystyle y, and \displaystyle z:

\displaystyle z = \frac{(K)(2y)}{3x}

where \displaystyle K is the constant of variation. The \displaystyle x term varies indirectly with \displaystyle z and is therefore in the denominator.

Next, we solve for \displaystyle K based on the initial values of the variables:

\displaystyle 2 = \frac{(K)(2\times 4)}{(3\times 8)}

\displaystyle 2 = \frac{8K}{24}

\displaystyle 48 = 8K

\displaystyle 6=K

Now that we have the value of \displaystyle K, we can solve for \displaystyle z in the second scenario:

\displaystyle z=\frac{(6)(2y)}{3x}

\displaystyle z=\frac{12y}{3x}

\displaystyle z=\frac{4y}{x}

\displaystyle z=\frac{4(6)}{3}

\displaystyle z=\frac{24}{3}

\displaystyle z=8

 

 

 

 

Example Question #5 : Indirect Proportionality

The number of slices of pizza you get varies indirectly with the total number of people in the restaurant. If you get \displaystyle 3 slices when there are \displaystyle 16 people, how many slices would you get if there are \displaystyle 12 people?

Possible Answers:

\displaystyle \text{5 slices.}

\displaystyle \text{2 slices.}

\displaystyle \text{6 slices.}

\displaystyle \text{4 slices.}

Correct answer:

\displaystyle \text{4 slices.}

Explanation:

The problem follows the formula 

\displaystyle P = \frac{k}{n} 

where P is the number of slices you get, n is the number of people, and k is the constant of variation.

Setting P=3 and n = 16 yields k=48.

\displaystyle 48=P(n)

Now we substitute 12 in for n and solve for P

\displaystyle 48=P(12)

\displaystyle \frac{48}{12}=P

\displaystyle 4=P

Therefore with 12 people, you get 4 slices.

Example Question #6 : Indirect Proportionality

The number of raffle tickets given for a contest varies indirectly with the total number of people in the building. If you get \displaystyle 20 tickets when there are \displaystyle 150 people, how many slices would you get if there are \displaystyle 100 people?

Possible Answers:

\displaystyle 40

\displaystyle 25

\displaystyle 50

\displaystyle 20

\displaystyle 30

Correct answer:

\displaystyle 30

Explanation:

The problem follows the formula 

 \displaystyle R = \frac{k}{n}

where R is the number of raffle tickets you get, n is the number of people, and k is the constant of variation.

Setting R=20 and n = 150 yields k=3000.

\displaystyle 3000=R(n)

Plugging in 100 for n and solving for R you get:

\displaystyle 3000=R(100)

\displaystyle \frac{3000}{100}=R

\displaystyle 30=R

The answer R is 30 tickets.

Example Question #7 : Indirect Proportionality

 

The budget per committee varies indirectly with the total number of committees created. If each committee is allotted \displaystyle \$500 when four committees are established, what would the budget per committee be if there were to be \displaystyle 2 committees?

 

Possible Answers:

\displaystyle \$1500

\displaystyle \$300

\displaystyle \$750

\displaystyle \$1000

Correct answer:

\displaystyle \$1000

Explanation:

The problem follows the formula 

 \displaystyle B = \frac{k}{n}

where B is the budget per committee, n is the number of committees, and k is the constant of variation.

Setting B=500 and n = 4 yields k=2000.

Now using the following equation we can plug in our n of 2 and solve for B.

\displaystyle 2000=B(n)

\displaystyle 2000=B(2)

\displaystyle \frac{2000}{2}=B

\displaystyle 1000=B

The answer of B is $1000.

Example Question #8 : Indirect Proportionality

The number of hours needed for a contractor to finish a job varies indirectly with the total number of people the contractor hires. If the job is completed in \displaystyle 6 hours when there are \displaystyle 8 people, how many hours would it take if there were \displaystyle 16 people?

Possible Answers:

\displaystyle \text{4 hours}

\displaystyle \text{2 hours}

\displaystyle \text{3 hours}

\displaystyle \text{5 hours}

Correct answer:

\displaystyle \text{3 hours}

Explanation:

The problem follows the formula 

 \displaystyle H = \frac{k}{n}

where H is the number of hours to complete the job, n is the number of people hired, and k is the constant of variation.

Setting H=6 and n = 8 yields k=48.

Therefore using the following equation we can plug 16 in for n and solve for H.

\displaystyle 48=H(16)

\displaystyle \frac{48}{16}=H

\displaystyle 3=H

Therefore H is 3 hours.

Example Question #31 : Basic Single Variable Algebra

\displaystyle \small x varies inversely with \displaystyle y. If \displaystyle x= 15 , \displaystyle y= 2 . What is the value of \displaystyle x if \displaystyle y= 90 ? 

Possible Answers:

\displaystyle 3

\displaystyle 675

\displaystyle \frac{1}{3}

\displaystyle 30

Correct answer:

\displaystyle \frac{1}{3}

Explanation:

\displaystyle x varies inversely with \displaystyle y, so the variation equation can be written as:

\displaystyle x = k\cdot\frac{1}{y}

\displaystyle k can be solved for, using the first scenario:

\displaystyle 15 = k\cdot\frac{1}{2}

\displaystyle k = 15\cdot2 = 30

Using this value for \displaystyle k = 30 and \displaystyle y = 90, we can solve for \displaystyle x:

\displaystyle x = 30\cdot\frac{1}{90} = \frac{30}{90} = \frac{3}{9} = \frac{1}{3}

Example Question #1 : Indirect Proportionality

\displaystyle \small x varies directly with \displaystyle \small A and inversely with the square root of \displaystyle \small B. Find values for \displaystyle \small A and \displaystyle \small B that will give \displaystyle \small x = 3, for a constant of variation \displaystyle \small k = 2.  

Possible Answers:

All of these answers are correct

\displaystyle \small A = 7.5 and \displaystyle \small B = 25

\displaystyle \small A = 9 and \displaystyle \small B = 36

\displaystyle \small A = 3 and \displaystyle \small B = 4

Correct answer:

All of these answers are correct

Explanation:

From the first sentence, we can write the equation of variation as:

\displaystyle \small x = k \cdot \frac{A}{\sqrt{B}}

We can then check each of the possible answer choices by substituting the values into the variation equation with the values given for \displaystyle \small x and \displaystyle \small k.

\displaystyle \small 3 = 2 \cdot \frac{3}{\sqrt{4}} = 2 \cdot \frac{3}{2} = 3 

Therefore the equation is true if \displaystyle \small A = 3 and \displaystyle \small B = 4

\displaystyle \small 3 = 2 \cdot \frac{7.5}{\sqrt{25}} = 2 \cdot \frac{7.5}{5} = 2 \cdot 1.5 = 3

 

Therefore the equation is true if \displaystyle \small A = 7.5 and \displaystyle \small B = 25

\displaystyle \small 3 = 2 \cdot \frac{9}{\sqrt{36}} = 2 \cdot \frac{9}{6} = 2 \cdot 1.5 = 3

 

Therefore the equation is true if \displaystyle \small A = 9 and \displaystyle \small B = 36

The correct answer choice is then "All of these answers are correct" 

Example Question #33 : Proportionalities

\displaystyle \small x varies directly with \displaystyle \small y and \displaystyle \small z^{2}. If \displaystyle \small y = \frac{1}{3} and \displaystyle \small z = 3, then \displaystyle \small x = 3. Find \displaystyle \small x if \displaystyle \small y = 12 and \displaystyle \small z = 2

Possible Answers:

\displaystyle 72

\displaystyle 48

None of these answers are correct

\displaystyle 24

Correct answer:

\displaystyle 48

Explanation:

From the relationship of \displaystyle \small x, \displaystyle \small y, and \displaystyle \small z; the equation of variation can be written as:

\displaystyle \small x = k \cdot y \cdot z^{2}

Using the values given in the first scenario, we can solve for k:

\displaystyle \small 3 = k \cdot \frac{1}{3} \cdot 3^{2} = k \cdot \frac{1}{3} \cdot 9 = k \cdot 3

\displaystyle \small k = 1

Using the value of k and the values of y and z, we can solve for x:

\displaystyle \small x = 1 \cdot 12 \cdot 2^{2} = 12 \cdot 4 = 48

Example Question #31 : Other Mathematical Relationships

\displaystyle y varies inversely with \displaystyle x and the square root of \displaystyle z. When \displaystyle x=4 and \displaystyle z=81\displaystyle y=\frac{2}{9}. Find \displaystyle y when \displaystyle x=8 and \displaystyle z=4.

Possible Answers:

None of these answers are correct

\displaystyle \small \frac{1}{2}

\displaystyle 32

\displaystyle \small \frac{1}{4}

Correct answer:

\displaystyle \small \frac{1}{2}

Explanation:

First, we can create an equation of variation from the the relationships given:

\displaystyle y = k \cdot \frac{1}{x \cdot \sqrt{z}}

Next, we substitute the values given in the first scenario to solve for \displaystyle \small k:

\displaystyle \frac{2}{9} = k \cdot \frac{1}{4 \cdot \sqrt{81}} = k \cdot \frac{1}{4 \cdot 9} = k \cdot \frac{1}{36}

\displaystyle \small \rightarrow k = 36 \cdot \frac{2}{9} = \frac{36}{9} \cdot 2 = 4 \cdot 2 = 8

Using the value for \displaystyle k, we can now use the second values for \displaystyle x and \displaystyle z to solve for \displaystyle y:

\displaystyle \small Y = 8 \cdot \frac{1}{8 \cdot \sqrt{4}} = 8 \cdot \frac{1}{8 \cdot 2} = 8 \cdot \frac{1}{16} = \frac{1}{2}

Example Question #35 : Proportionalities

\displaystyle x varies directly with \displaystyle z^{2} and the square root of \displaystyle y. If \displaystyle y=100, and \displaystyle \small z=12 then \displaystyle x=5. Find the value of \displaystyle x if \displaystyle y=4 and \displaystyle z=6.

Possible Answers:

\displaystyle \small \frac{16 \sqrt6}{288}

None of these answers are correct

\displaystyle \small \frac{1}{2}

\displaystyle \small \frac{1}{4}

Correct answer:

\displaystyle \small \frac{1}{4}

Explanation:

From the relationship given, we can set up the variation equation

\displaystyle \small x = k \cdot \sqrt{y} \cdot z^{2}

Using the first relationship, we can then solve for \displaystyle \small k

\displaystyle \small 5 = k \cdot \sqrt{100} \cdot 12^{2}

\displaystyle \small 5 = k \cdot 10 \cdot 144

\displaystyle \small k = \frac{5}{10 \cdot 144} = \frac{1}{2\cdot144} = \frac{1}{288}

Now using the values from the second relationship, we can solve for x

\displaystyle \small x = \frac{1}{288}\cdot\sqrt4\cdot6^2 = \frac{1}{288}\cdot2\cdot36 = \frac{72}{288} = \frac{1}{4}

Learning Tools by Varsity Tutors