All SAT Critical Reading Resources
Example Questions
Example Question #182 : Natural Science Passages
"The Place of Lesion Studies in Neuroscience" by Samantha Winter (2013)
It’s easy to forget that the study of neuroscience originated from non-normalized, non-statistically appraised methods like lesion studies. It’s equally easy, with the advent of sophisticated technology, to render such a method obsolete. A small group of neuroscientists today make a case for the reinstitution of lesion studies—the study of abnormal brains with damaged regions in order to better understand the brain—into the twenty-first-century cognitive neuroscience realm. Their suggestion is bold, but their argument is justified.
Cognitive neuroscientists advocate for the use of convergent methods. Many of them argue that with the limitations of our existing techniques, convergent evidence is imperative for sound research. If this is the case, why ignore a method that has potential for implying causality in a domain dominated by correlational research? Rather than advocating for a single method, neuroscientists should take their own advice and use convergent techniques. Sound research should combine a variety of techniques to examine both causal relationships and overcome the individual shortcomings of each method through the use of many.
Lesion studies are also significantly more beneficial now than they were in earlier times. Neuroimaging methods have enhanced our understanding of what contributes to the brain problems most often encountered, and more refined experiments have been developed to confirm the findings from the more unreliable lesion studies. This transformation allows lesion studies to be included alongside the other systems as a mechanism for understanding the human brain.
The author would most likely agree with which of the following statements?
Scientific research should receive more financial support.
It is important to eliminate old methods and techniques to avoid being archaic in all fields.
The best research uses a number of techniques to understand a concept.
The study of abnormality should be the primary focus of all research.
Neuroscience is the most important branch of science.
The best research uses a number of techniques to understand a concept.
The main argument of this passage is that numerous techniques should serve to compliment each other and produce the best results. Presumably, the author’s opinion in neuroscience would likely apply to research overall. The author argues against "it is important to eliminate old methods and techniques to avoid being archaic in all fields hh. Scientific research should receive more financial support." There is no indication that financial support has any contribution to the author’s argument, therefore "scientific research should receive more financial support" is incorrect. Finally, "the study of abnormality should be the primary focus of all research" is incorrect because the support of lesion studies in this passage is not derived from a desire to study abnormality, but to understand regular functioning using a method that assesses abnormal functioning.
Example Question #204 : Natural Sciences
"The Cell Cycle" by Joseph Ritchie (2014)
The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.
Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.
The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.
The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.
About how much time does a cell spend undergoing mitosis in the cell cycle?
Fifteen percent
Fifty percent
Ten percent
Twenty-five percent
Ten percent
At the beginning of the second paragraph, the passage says, "Roughly ninety percent of the cell cycle is spent in interphase." Based on this information, and the fact that we are told that the cell cycle consists of "two main phases: interphase and mitosis," we can thus infer that about ten percent of a cell's time in the cell cycle is spent undergoing mitosis.
Example Question #223 : Isee Middle Level (Grades 7 8) Reading Comprehension
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
What can we infer preceded this paragraph?
Descriptions of animals that hunt other animals efficiently by camouflaging themselves
Descriptions of changing environments
Descriptions of animals that have not adapted to their environments
Descriptions of animals that defend themselves by looking like things in a stable environment
Descriptions of animals that defend themselves by looking like things in a changing environment
Descriptions of animals that defend themselves by looking like things in a stable environment
In order to infer what likely “preceded,” or came before, this passage, we should take at what the passage is talking about right when it starts. The passage’s first sentence says, “The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding.” The “so far quoted” means so far said or provided and tells us that the writer has been talking about “examples of protective resemblance.” This means that the writer most likely discussed “animals that defend themselves by looking like things in a stable environment” in the part of the book that comes right before the passage.
Example Question #212 : Natural Sciences
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
Based on the passage, what can we infer about the weasel?
Like the stoat, it also lives in burrows.
Like the stoat, it also changes its coat color.
Like the Irish hare, it has grey fur in the summer.
Like the stoat, it has claws.
Like the Irish hare, has been the subject of investigations.
Like the stoat, it also changes its coat color.
The weasel is mentioned in two places in the passage, both in the passage’s last paragraph, both reproduced here:
“But in winter, the entire coat [of the stoat], save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.”
What does the passage tell us about the weasel? Well, we can infer that it is in some way like the stoat, because the passage says “A similar example is afforded by the weasel” right after describing how the stoat’s fur changes color. We are also told that it is carnivorous, but this is not an inference we have to make, and it doesn’t relate to any of the answer choices. The best answer choice is “Like the stoat, it also changes its coat color.” This captures the specific similarity between the stoat and weasel being discussed when the author writes, “A similar example is afforded by the weasel.”
Example Question #3 : Identifying And Analyzing Important Details In Natural Science Passages
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
It can reasonably be inferred from the passage that which of the following is true?
The penguins were inquisitive.
The penguins were smaller than ducks.
The natives were afraid of water.
The extinction of the seals was caused by human interference.
The Portuguese explored the coast before the Dutch.
The Portuguese explored the coast before the Dutch.
The last paragraph mentions the first Dutch exploration, which took place in 1595. From the information presented in the last line of the previous paragraph, we know that the Portuguese stopped on the coast in 1499 on a return voyage, so it is safe to assume they explored the coast before the Dutch.
Example Question #2 : Drawing Inferences From Natural Science Passages
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
Based on the first text the author describes, the probable reason for the name given to the penguins was to __________.
describe their nesting habits
suggest that they are flightless
differentiate them from other birds found in Portugal
commemorate the voyage that discovered them
elaborate on their character and behavior
elaborate on their character and behavior
The author describes the possible root of the penguins name in the roteiro, saying that “the word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.” Thus, the probable reason for the name is that it alludes to the nature of the penguins.
Example Question #2 : Organization And Structure In Science Passages
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
What role does the underlined sentence play in the passage as a whole?
It demonstrates that the "recent writer" quoted in the first paragraph is unreliable.
It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other.
It offers an opinion as to the validity of the theory of the "recent writer" quoted in the first paragraph.
It provides evidence that supports the theory of the writer quoted in the first paragraph, but casts doubt on other theories.
It provides a counterargument opposing the theory of the "recent writer" quoted in the first paragraph.
It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other.
The sentence underlined is "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays." To answer this question correctly, you have to pay a great deal of attention to the way in which it is presented in the passage. It is quoted as evidence that the "recent writer" uses to support his or her theory that leaf size differs in this way due to a change in the intensity of the sunlight. So, neither"It provides a counterargument opposing the theory of the 'recent writer' quoted in the first paragraph" nor "It demonstrates that the 'recent writer' quoted in the first paragraph is unreliable" can be the correct answer. Since the statement in question is just presenting evidence, and not an opinion, "It offers an opinion as to the validity of the theory of the 'recent writer' quoted in the first paragraph" cannot be the correct answer either.
This leaves us with two possible answer choices: "It provides evidence that supports the theory of the writer quoted in the first paragraph, but casts doubt on other theories," and "It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other." The author of the passage, in the second paragraph, says that "the facts as above stated" are "in themselves correct, they do not by any means establish the theory founded on them." Given this, along with the fact that the underlined sentence's evidence never casts doubt on any theories in the passage, the correct answer is "It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other."
Example Question #1 : Analyzing Argumentative Claims, Bias, And Support In Natural Science Passages
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
The author brings up Joseph Hooker’s research in order to __________.
disprove the theory of the "recent writer" quoted in the first paragraph
demonstrate that the colors of flowers change at varying latitudes
suggest that a follow-up experiment be performed to check his results
support Martins’ theory
provide evidence in favor of the author’s theory, which disagrees with all of the previously mentioned theories
disprove the theory of the "recent writer" quoted in the first paragraph
The author brings up Joseph Hooker's research near the end of the second paragraph, stating, "By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south." This immediately follows the sentence, "The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect." In this sentence, the author is doubting the veracity of the "recent writer" quoted in the first paragraph. The author then uses Hooker's evidence to disprove the theory of the "recent writer," because if the theory of the "recent writer" were correct, there would be very few white or yellow flowers in the Arctic and many red or golden ones, and Hooker's evidence shows that this is not the case, as most of the Arctic flowers he observed were white. So, the correct answer is that the author uses Joseph Hooker's evidence to "disprove the theory of the 'recent writer' quoted in the first paragraph." "Provide evidence in favor of the author’s theory, which disagrees with all of the previously mentioned scientists' statements" cannot be the correct answer because the author is in agreement with M. Grisebach.
Example Question #14 : Drawing Inferences From Natural Science Passages
"The Multiple Sides of Computer Science" by Matthew Minerd (2014)
It often takes some time for a new discipline to become recognized as an independent science. An excellent example of this is computer science. In many ways, this science still is a hodgepodge of several different sciences, each one having its own distinct character. For example, some computer scientists are almost indistinguishable from mathematicians. Many of the most difficult topics in pattern recognition and data communications require intensive mathematics in order to provide software solutions. Years of training in the appropriate disciplines are necessary before the computer scientist can even begin to work as a programmer in such areas. In contrast to those computer scientists who work with complex mathematics, many computer scientists work on areas of hardware development that are similar to disciplines like electrical engineering and physics.
However, computer science has its own particular problems regarding the unity of its subject matter. There are many practical applications for computing work; therefore, many computer scientists focus on learning a large set of skills in programming languages, development environments, and even information technology. All of these disciplines have a certain practical coloration that is quite distinct from the theoretical concepts used in other parts of the field. Nevertheless, these practical topics add to the broad range of topics covered by most academic programs that claim to focus on “computer science.” It can only be hoped that these disciplines will increase in orderliness in the coming decades.
Which of the following topics would not be a good example to add to the second paragraph?
Studies in the types of physics involved in memory chip design
Studies of the social ramifications of programming
Topics related to building new computers from parts
Courses in manufacturing and connecting internet cables
Applications of computing to civic planning
Studies in the types of physics involved in memory chip design
The second paragraph focuses on the practical topics that often are taught in computer science programs. (These are contrasted to the more "theoretical" or "scientific" topics noted in the first paragraph.) The only really "scientific" topic listed here is the one about the physics involved in designing memory chips. Since this focuses on the physics, it is not so much about how to make these things as it is about the reasons why they work. This is more of a speculative matter than a practical or technical one.
Example Question #1 : Analyzing Argumentative Claims, Bias, And Support In Natural Science Passages
Adapted from An Introduction to Astronomy by Forest Ray Moulton (1916 ed.)
It is doubtful if any important scientific idea ever sprang suddenly into the mind of a single man. The great intellectual movements in the world have had long periods of preparation, and often many men were groping for the same truth, without exactly seizing it, before it was fully comprehended.
The foundation on which all science rests is the principle that the universe is orderly, and that all phenomena succeed one another in harmony with invariable laws. Consequently, science was impossible until the truth of this principle was perceived, at least as applied to a limited part of nature.
The phenomena of ordinary observation, as, for example, the weather, depend on such a multitude of factors that it was not easy for men in their primitive state to discover that they occur in harmony with fixed laws. This was the age of superstition, when nature was supposed to be controlled by a great number of capricious gods whose favor could be won by childish ceremonies. Enormous experience was required to dispel such errors and to convince men that the universe is one vast organization whose changes take place in conformity with laws which they can in no way alter.
The actual dawn of science was in prehistoric times, probably in the civilizations that flourished in the valleys of the Nile and the Euphrates. In the very earliest records of these people that have come down to modern times it is found that they were acquainted with many astronomical phenomena and had coherent ideas with respect to the motions of the sun, moon, planets, and stars. It is perfectly clear from their writings that it was from their observations of the heavenly bodies that they first obtained the idea that the universe is not a chaos. Day and night were seen to succeed each other regularly, the moon was found to pass through its phases systematically, the seasons followed one another in order, and in fact the more conspicuous celestial phenomena were observed to occur in an orderly sequence. It is to the glory of astronomy that it first led men to the conclusion that law reigns in the universe.
Which of the following is the best image for the author’s view of the universe?
It is relatively ordered chaos.
None of the other answers
It is a structured whole.
Its highest beauties are found in the stars.
It is the source of the greatest of all marvels, particularly life itself.
It is a structured whole.
Sometimes, the answer to a question can be found in a single sentence. In the case of this question, the answer is found in the very last sentence: "It is to the glory of astronomy that it first led men to the conclusion that law reigns in the universe." If law reigns in the universe, this means that it is an orderly whole, not deviating from its law-like course of events. This is the best answer among those provided.