PSAT Math : Right Triangles

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Right Triangles

Side  in the triangle below (not to scale) is equal to . Side  is equal to . What is the length of side ?

Right_triangle_with_labeled_sides

Possible Answers:

Correct answer:

Explanation:

Use the Pythagorean Theorem: , where a and b are the legs and c is the hypotenuse.

We know  and , so we can plug them in to solve for c:

Example Question #72 : Right Triangles

Dan drives 5 miles north and then 8 miles west to get to school. If he walks, he can take a direct path from his house to the school, cutting down the distance.  How long is the path from Dan's house to his school?

Possible Answers:

89 miles

13 miles

19 miles

4.36 miles

9.43 miles

Correct answer:

9.43 miles

Explanation:

We are really looking for the hypotenuse of a triangle that has legs of 5 miles and 8 miles.

Apply the Pythagorean Theorem:

a2 + b2 = c2

25 + 64 = c2

89 = c2

c = 9.43 miles

Example Question #63 : Right Triangles

What is the hypotenuse of a right triangle with side lengths  and ?

Possible Answers:

Correct answer:

Explanation:

The Pythagorean Theorem states that . This question gives us the values of and , and asks us to solve for .

Take  and  and plug them into the equation as  and :

Now we can start solving for :

The length of the hypotenuse is .

Example Question #61 : Triangles

One leg of a triangle measures 12 inches. Which of the following could be the length of the other leg if the hypotenuse is an integer length?

Possible Answers:

Correct answer:

Explanation:

By the Pythagorean Theorem, if  is the hypotenuse and  and  are the legs, .

Set , the known leg, and rewrite the above as:

We can now substitute each of the five choices for ; the one which yields a whole number for  is the correct answer choice.

:

 

:

 

:

 

:

 

:

 

The only value of  which yields a whole number for the hypotenuse  is 16, so this is the one we choose.

Example Question #64 : Right Triangles

Figure6

Find the perimeter of the polygon.

Possible Answers:

Correct answer:

Explanation:

Divide the shape into a rectangle and a right triangle as indicated below.

Figure7

Find the hypotenuse of the right triangle with the Pythagorean Theorem, , where  and  are the legs of the triangle and  is its hypotenuse. 

This is our missing length.

Now add the sides of the polygon together to find the perimeter:

Example Question #65 : Right Triangles

The lengths of the sides of a right triangle are consecutive integers, and the length of the shortest side is . Which of the following expressions could be used to solve for ?

Possible Answers:

Correct answer:

Explanation:

Since the lengths of the sides are consecutive integers and the shortest side is , the three sides are , , and .

We then use the Pythagorean Theorem:

 

 

Example Question #73 : Right Triangles

Square  is on the coordinate plane, and each side of the square is parallel to either the -axis or -axis. Point  has coordinates and point  has the coordinates .

Quantity A:  5\sqrt{2}

Quantity B: The distance between points  and

Possible Answers:

Quantity B is greater.

 

The relationship cannot be determined from the information provided.

 

Quantity A is greater.

 

The two quantities are equal.

 

Correct answer:

The two quantities are equal.

 

Explanation:

To find the distance between points  and , split the square into two 45-45-90 triangles and find the hypotenuse. The side ratio of the 45-45-90 triangle is , so if the sides have a length of 5, the hypotenuse must be 5\sqrt{2}.

Example Question #74 : Right Triangles

Justin travels  to the east and  to the north. How far away from his starting point is he now?

Possible Answers:

Correct answer:

Explanation:

This is solving for the hypotenuse of a triangle. Using the Pythagorean Theorem, which says that  

  

 

Example Question #51 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem

Susie walks north from her house to a park that is 30 meters away. Once she arrives at the park, she turns and walks west for 80 meters to a bench to feed some pigeons. She then walks north for another 30 meters to a concession stand. If Susie returns home in a straight line from the concession stand, how far will she walk from the concession stand to her house, in meters?

Possible Answers:

200

70

25

100

50

Correct answer:

100

Explanation:

Susie walks 30 meters north, then 80 meters west, then 30 meters north again. Thus, she walks 60 meters north and 80 meters west. These two directions are 90 degrees away from one another.

At this point, construct a right triangle with one leg that measures 60 meters and a second leg that is 80 meters.

You can save time by using the 3:4:5 common triangle. 60 and 80 are  and , respectively, making the hypotenuse equal to .

We can solve for the length of the missing hypotenuse by applying the Pythagorean theorem:

Substitute the following known values into the formula and solve for the missing hypotenuse: side .

 

Susie will walk 100 meters to reach her house.

Example Question #51 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem

The lengths of the sides of a triangle are consecutive odd numbers and the triangle's perimeter is 57 centimeters. What is the length, in centimeters, of its longest side?

Possible Answers:

21

17

25

19

23

Correct answer:

21

Explanation:

First, define the sides of the triangle. Because the side lengths are consecutive odd numbers, if we define the shortest side will be as , the next side will be defined as , and the longest side will be defined as . We can then find the perimeter of a triangle using the following formula:

Substitute in the known values and variables.

Subtract 6 from both sides of the equation.

Divide both sides of the equation by 3. 

Solve.

This is not the answer; we need to find the length of the longest side, or 

Substitute in the calculated value for  and solve.

The longest side of the triangle is 21 centimeters long.

Learning Tools by Varsity Tutors