PSAT Math : PSAT Mathematics

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #941 : Psat Mathematics

f(x) = 0.1x + 7

g(x) = 1000x + 4

What is g(f(100))?

Possible Answers:

1700.4

170040

17004

170.04

1700400

Correct answer:

17004

Explanation:

First find the value of f(100) = 0.1(100) + 7 = 10 + 7 = 17

Then find g(17) = 1000(17) + 4 = 17000 + 4 = 17004. 

Example Question #942 : Psat Mathematics

The rate of a gym membership costs p dollars the first month and m dollars per month every month thereafter. Which of the following represents the total cost of the gym membership for n months, if n is a positive integer?

Possible Answers:
p+m(n-1)
p+m(n+1)
pn
pn+m(n-1)
p+mn
Correct answer: p+m(n-1)
Explanation:

The one-time first-month cost is p, and the monthly cost is m, which gets multipled by every month but the first (of which there are n -1). The total cost is the first-month cost of p, plus the monthly cost for (i.e. times) n -1 months, which makes the total cost equal to p + m (n -1).

 

Example Question #61 : Algebraic Functions

1.       If f(x) = (x + 4)/(x – 4) for all integers except x = 4, which of the following has the lowest value?

Possible Answers:

f(0)

f(1)

f(–3)

f(6)

f(–1)

Correct answer:

f(1)

Explanation:

Plug each value for x into the above equation and solve for f(x).  f(1) provides the lowest value –5/3

Example Question #991 : Algebra

If n  and p  are positive and 100n3p-1 = 25n, what is n-2 in terms of p ?

Possible Answers:

4p1

4p3

4p2

4p2

4p

Correct answer:

4p1

Explanation:

To solve this problem, we look for an operation to perform on both sides that will leave n-2 by itself on one side. Dividing both sides by 25n-3 would leave n-2 by itself on the right side of the equqation, as shown below:

100n3p–1/25n–3 = 25n/25n–3

Remember that when dividing terms with the same base, we subtract the exponents, so the equation can be written as 100n0p–1/25 = n–2

 

Finally, we simplify to find 4p1 = n2.  

Example Question #22 : Algebraic Functions

Given f(x)=|3x-2|. What values of x satisfy f(x)=10

Possible Answers:

4

0

0,4

-8/3,4

-8/3,0,4

Correct answer:

-8/3,4

Explanation:

Setting f(x)=10 and taking the equation out of the absolute value you get 10=3x-2 and -10=3x-2. Solving both of these equations for x gives you x=4 or -8/3.

Example Question #942 : Psat Mathematics

x

f(x)

g(x)

9

4

0

10

6

1

11

9

0

12

13

–1

According to the figure above, what is the value of g(12) – √f(9)?

Possible Answers:

–5

13

3

–1

–3

Correct answer:

–3

Explanation:

For this question, we "plug in" the value of x given, which is inside the parentheses, and follow along the table to see what value the f or g functions output. For g(12), the output value is –1, while for f(9), the output value is 4 (be careful not to reverse these!) Thus, we can plug into the equation given:

(–1) – √4) = –1 – 2 = –3.

Example Question #62 : Algebraic Functions

Let f(x, y) = x2y2 – xy + y. If a = f(1, 3), and b = f(–2, –1), then what is f(a, b)?

Possible Answers:

2005

4025

9

73

7

Correct answer:

73

Explanation:

f(x, y) is defined as x2y2 – xy + y. In order to find f(a, b), we will need to first find a and then b.

We are told that a = f(1, 3). We can use the definition of f(x, y) to determine the value of a.

a = f(1, 3) = 1232 – 1(3) + 3 = 1(9) – 3 + 3 = 9 + 0 = 9

a = 9

Similarly, we can find b by determining the value of f(–2, –1).

b = f(–2, –1) = (–2)2(–1)2 – (–2)(–1) + –1 = 4(1) – (2) – 1 = 4 – 2 – 1 = 1

b = 1

Now, we can find f(a, b), which is equal to f(9, 1).

f(a, b) = f(9, 1) = 92(12) – 9(1) + 1 = 81 – 9 + 1 = 73

f(a, b) = 73

The answer is 73.

Example Question #992 : Algebra

If z + 2x = 10 and 7z + 2x = 16, what is z? 

Possible Answers:

-1

-2

0

1

2

Correct answer:

1

Explanation:

Subtract the first expression from the second. That gives you 6z = 6. That simplifies to z = 1.

Example Question #21 : Algebraic Functions

In the following sequence:

8, 11, 14, 17, 20...

Which of the following equations could represent the underlying function of this sequence?

Possible Answers:

2+ 4

4+ 4

3+ 4

3+ 5

2+ 5

Correct answer:

3+ 5

Explanation:

In this question, the first 5 terms of the sequence are given.  In other words, when the inputs n = {1, 2, 3, 4, 5}, an underlying function f(n) produces an output of {8, 11, 14, 17, 20}.

The best way to solve this problem is to use the answers.

The answers have 5 possible functions for this sequence.

2n + 4

2n + 5

3n + 4

3n + 5

4+ 4

When n = {1, 2, 3, 4, 5}, these functions produce the following sequence:

2n + 4 = {6, 8, 10, 12, 14}

2n + 5 = {7, 9, 11, 13, 15}

3n + 4 = {7, 10, 13, 16, 19}

3n + 5 = {8, 11, 14, 17, 20}

4+ 4 = {8, 12, 16, 20, 24}

Therefore the function 3n + 5 is the correct answer.

Note: when determining if a certain function is the correct one, you do not have to solve for all 5 terms.  As soon as one of the terms do not match the original sequence, that function can be eliminated.

Example Question #993 : Algebra

Let f(x) be a function with at least one root. All of the following graphs must have the exact same root(s) as f(x) EXCEPT:

Possible Answers:

(f(x))2

(f(x))(1/2)

(f(x))1

–4f(x)

|f(x)|

Correct answer:

(f(x))1

Explanation:

Remember that a root of a function is the point where it crosses the x-axis, i.e. an x-intercept. The x-intercepts of a function occur where the y-value of a point is equal to zero. Therefore, the solutions to the equation f(x) = 0 give us the roots of f(x). Thus, if we set the functions in the answer choices equal to 0, and we end up solving the equation f(x) = 0, then the function will have the same roots as f(x) .

Let's set each of the functions in the answer choices equal 0.

First, let's look at (f(x))(1/2) = 0. Raising a function to the 1/2 power is the same as taking the square root of f(x). To get rid of the square root, we can square both sides.

(f(x))(1/2) = √(f(x)) = 0

(√f(x))2 = 02

f(x) = 0. Solving the equation f(x) = 0 will give us the roots of f(x). This means, to find the roots of (f(x))(1/2), we will end up having to find the roots of f(x). In short, the roots of (f(x))(1/2) will be the same as those of f(x).

Intuitively, this makes sense. When we graph (f(x))(1/2) , what we are doing is taking the square root of the y-values of every point on f(x). The roots of f(x) will all have y-values of zero, and taking the square root of zero isn't going to change the y-value. Thus, the location of the roots on f(x) will not change, and the roots of (f(x))(1/2) will be the same as the roots of f(x).

Next, we can look at (f(x))2. We can set it equal to zero to find the roots.

(f(x))2 = 0

We can then take the square root of both sides. The square root of zero is zero.

f(x) = 0

Once again, we are left with the equation f(x) = 0, which will give us the roots of f(x). This makes sense, because (f(x))2 means we are squaring the y-value of the roots on f(x), which wouldn't change the location of the roots, because the square of zero is still zero.

The third graph is –4f(x). Once again, we can set it equal to zero.

–4f(x) = 0

Divide both sides by –4.

f(x) = 0

We are left with this equation, which will give us the roots of f(x). This makes sense, because if we were to multiply the y-values of the x-intercepts on f(x) by –4, then the location of the points wouldn't change. Multiply 0 by –4 will still give us 0.

The next function is |f(x)|. Whenever we take an absolute value of a function, we take any negative points and make them positive. Essentially, |f(x)| reflects all of the negative points on f(x) across the x-axis. However, points located on the x-axis are unchanged by taking the absolute value, because the absolute value of zero is still going to be zero. In other words, if we take the absolute value of the zeros on f(x), they will still be at the same location. Thus, |f(x)| and f(x) have the same roots.

This leaves the function (f(x))–1. We can set it equal to zero to find its roots. Remember that, in general, a1 = 1/a.

(f(x))–1 = 1/f(x) = 0

Multiply by f(x) on both sides.

1 = 0(f(x)) = 0

Clearly, we have something strange here, because one doesn't equal zero. This tells us that (f(x))1 can't have the same roots as f(x).

Let's look at an example of why the roots of f(x) and (f(x))1 won't necessarily be the same. Let f(x) = x. The only root of f(x) would be at the point (0,0). Next, let's look at (f(x))1 = 1/x. The graph of 1/x won't have any roots, because it has a vertical asymptote at zero (1/x is not defined when x = 0). Thus, f(x) doesn't have the same roots as (f(x))1. Intuitively, this makes since, because (f(x))1 essentially takes the reciprocal of the y-values on every point of f(x). But zero doesn't have a reciprocal (because 1/0 isn't defined), so the roots will likely change.

The answer is (f(x))1 .

Learning Tools by Varsity Tutors