All PSAT Math Resources
Example Questions
Example Question #71 : Geometry
A star is inscribed in a circle with a diameter of 30, given the area of the star is 345, find the area of the shaded region, rounded to one decimal.
341.5
356.5
361.5
346.5
351.5
361.5
The area of the circle is (30/2)2*3.14 (π) = 706.5, since the shaded region is simply the area difference between the circle and the star, it’s 706.5-345 = 361.5
Example Question #302 : Plane Geometry
The diameter of a circle increases by 100 percent. If the original area is 16π, what is the new area of the circle?
54π
50π
160π
64π
49π
64π
The original radius would be 4, making the new radius 8 and by the area of a circle (A=π(r)2) the new area would be 64π.
Example Question #303 : Plane Geometry
A circle with a diameter of 6” sits inside a circle with a radius of 8”. What is the area of the interstitial space between the two circles?
7π in2
25π in2
28π in2
72π in2
55π in2
55π in2
The area of a circle is πr2.
The diameter of the first circle = 6” so radius of the first circle = 3” so the area = π * 32 = 9π in2
The radius of the second circle = 8” so the area = π * 82 = 64π in2
The area of the interstitial space = area of the first circle – area of the second circle.
Area = 64π in2 - 9π in2 = 55π in2
Example Question #21 : Radius
If the radius of a circle is tripled, and the new area is 144π what was the diameter of the original circle?
4
8
6
7
12
8
The area of a circle is A=πr2. Since the radius was tripled 144π =π(3r)2. Divide by π and then take the square root of both sides of the equal sign to get 12=3r, and then r=4. The diameter (d) is equal to twice the radius so d= 2(4) = 8.
Example Question #304 : Plane Geometry
If the radius of Circle A is three times the radius of Circle B, what is the ratio of the area of Circle A to the area of Circle B?
6
15
9
12
3
9
We know that the equation for the area of a circle is π r2. To solve this problem, we pick radii for Circles A and B, making sure that Circle A’s radius is three times Circle B’s radius, as the problem specifies. Then we will divide the resulting areas of the two circles. For example, if we say that Circle A has radius 6 and Circle B has radius 2, then the ratio of the area of Circle A to B is: (π 62)/(π 22) = 36π/4π. From here, the π's cancel out, leaving 36/4 = 9.
Example Question #61 : Circles
- A circle is inscribed inside a 10 by 10 square. What is the area of the circle?
50π
40π
100π
25π
10π
25π
Area of a circle = A = πr2
R = 1/2d = ½(10) = 5
A = 52π = 25π
Example Question #31 : Radius
A square has an area of 1089 in2. If a circle is inscribed within the square, what is its area?
16.5 in2
33 in2
33π in2
1089π in2
272.25π in2
272.25π in2
The diameter of the circle is the length of a side of the square. Therefore, first solve for the length of the square's sides. The area of the square is:
A = s2 or 1089 = s2. Taking the square root of both sides, we get: s = 33.
Now, based on this, we know that 2r = 33 or r = 16.5. The area of the circle is πr2 or π16.52 = 272.25π.
Example Question #551 : Geometry
A square has an area of 32 in2. If a circle is inscribed within the square, what is its area?
4√2 in2
32π in2
8π in2
2√2 in2
16π in2
8π in2
The diameter of the circle is the length of a side of the square. Therefore, first solve for the length of the square's sides. The area of the square is:
A = s2 or 32 = s2. Taking the square root of both sides, we get: s = √32 = √(25) = 4√2.
Now, based on this, we know that 2r = 4√2 or r = 2√2. The area of the circle is πr2 or π(2√2)2 = 4 * 2π = 8π.
Example Question #213 : Problem Solving
A manufacturer makes wooden circles out of square blocks of wood. If the wood costs $0.25 per square inch, what is the minimum waste cost possible for cutting a circle with a radius of 44 in.?
7744 – 1936π dollars
1936 – 484π dollars
1936 dollars
5808 dollars
1936π dollars
1936 – 484π dollars
The smallest block from which a circle could be made would be a square that perfectly matches the diameter of the given circle. (This is presuming we have perfectly calibrated equipment.) Such a square would have dimensions equal to the diameter of the circle, meaning it would have sides of 88 inches for our problem. Its total area would be 88 * 88 or 7744 in2.
Now, the waste amount would be the "corners" remaining after the circle was cut. The area of the circle is πr2 or π * 442 = 1936π in2. Therefore, the area remaining would be 7744 – 1936π. The cost of the waste would be 0.25 * (7744 – 1936π). This is not an option for our answers, so let us simplify a bit. We can factor out a common 4 from our subtraction. This would give us: 0.25 * 4 * (1936 – 484π). Since 0.25 is equal to 1/4, 0.25 * 4 = 1. Therefore, our final answer is: 1936 – 484π dollars.
Example Question #32 : Radius
A manufacturer makes wooden circles out of square blocks of wood. If the wood costs $0.20 per square inch, what is the minimum waste cost possible for cutting a circle with a radius of 25 in.?
2500 - 625π dollars
625 - 25π dollars
500 - 125π dollars
500 dollars
625 dollars
500 - 125π dollars
The smallest block from which a circle could be made would be a square that perfectly matches the diameter of the given circle. (This is presuming we have perfectly calibrated equipment.) Such a square would have dimensions equal to the diameter of the circle, meaning it would have sides of 50 inches for our problem. Its total area would be 50 * 50 or 2500 in2.
Now, the waste amount would be the "corners" remaining after the circle was cut. The area of the circle is πr2 or π * 252 = 625π in2. Therefore, the area remaining would be 2500 - 625π. The cost of the waste would be 0.2 * (2500 – 625π). This is not an option for our answers, so let us simplify a bit. We can factor out a common 5 from our subtraction. This would give us: 0.2 * 5 * (500 – 125π). Since 0.2 is equal to 1/5, 0.2 * 625 = 125. Therefore, our final answer is: 500 – 125π dollars.