All PSAT Math Resources
Example Questions
Example Question #252 : Geometry
Note: Figure NOT drawn to scale.
Give the volume (nearest tenth) of the above triangular pyramid.
The height of the pyramid is . The base is an equilateral triangle with sidelength 4, so its area can be calculated as follows:
The volume of a pyramid can be calculated using the fomula
Example Question #252 : Geometry
A regular tetrahedron has an edge length of . What is its volume?
The volume of a tetrahedron is found with the equation , where represents the length of an edge of the tetrahedron.
Plug in 4 for the edge length and reduce as much as possible to find the answer:
The volume of the tetrahedron is .
Example Question #1 : How To Find The Surface Area Of A Tetrahedron
A regular tetrahedron has four congruent faces, each of which is an equilateral triangle.
A given tetrahedron has edges of length six inches. Give the total surface area of the tetrahedron.
The area of an equilateral triangle is given by the formula
Since there are four equilateral triangles that comprise the surface of the tetrahedron, the total surface area is
Substitute :
square inches.
Example Question #1 : Tetrahedrons
Give the surface area of the above tetrahedron, or four-faced solid, to the nearest tenth.
Insufficient information is given to answer the question.
The tetrahedron has four faces, each of which is an equilateral triangle with sidelength 7. Each face has area
The total surface area is four times this, or about .
Rounded, this is 84.9.
Example Question #751 : Sat Mathematics
For a box to fit inside the cupboard, the sum of the height and the perimeter of the box must, at most, be 360 cm. If Jenn has a box that has a height of 40 cm and a length of 23 cm, what is the greatest possible width of the box?
137 cm
207 cm
13 cm
297 cm
0.4 cm
137 cm
First we write out the equation we are given. H + (2L +2W) = 360. H = 40 and L = 23
40 + (2(23) + 2W) = 360
40 + (46 + 2W) = 360
46 + 2W = 320
2W = 274
W = 137
Example Question #2 : Prisms
The volume of a rectangular prism is 80 cm3. The length, width, and height of the prism are each an integer number of cm. If the dimensions form three terms of an arithmetic sequence, find the average of the three dimensions.
4
7
8
5
6
5
Method 1:
Trial and error to find a combination of factors of 80 that differ by the same amount will eventually yield 2, 5, 8. The average is 5.
Method 2:
Three terms of an arithmetic sequence can be written as x, x+d, and x+2d. Multiply these together using the distributive property to find the volume and the following equation results:
x3 + 3dx2 + 2d2x - 80 = 0
Find an integer value of x that creates an integer solution for d. Try x=1 and we see the equation 1 + 3d + 2d2 - 80 = 0 or 2d2 + 3d -79 = 0. The determinant of this quadratic is 641, which is not a perfect square. Therefore, d is not an integer when x=1.
Try x=2 and we see the equation 8 + 12d + 4d2 - 80 = 0 or d2 + 3d - 18 = 0. This is easily factored to (d+6)(d-3)=0 so d=-6 or d=3. Since a negative value of d will result in negative dimensions of the prism, d must equal 3. Therefore, when substituting x=2 and d=3, the dimensions x, x+d, and x+2d become 2, 5, and 8. The average is 5.
Example Question #1 : Prisms
A right rectangular prism has a volume of 64 cubic units. Its dimensions are such that the second dimension is twice the length of the first, and the third is one-fourth the dimension of the second. What are its exact dimensions?
3 x 6 x 12
4 x 4 x 4
1 x 2 x 32
1 x 4 x 16
2 x 4 x 8
2 x 4 x 8
Based on our prompt, we can say that the prism has dimensions that can be represented as:
Dim1: x
Dim2: 2 * Dim1 = 2x
Dim3: (1/4) * Dim2 = (1/4) * 2x = (1/2) * x
More directly stated, therefore, our dimensions are: x, 2x, and 0.5x. Therefore, the volume is x * 2x * 0.5x = 64, which simplifies to x3 = 64. Solving for x, we find x = 4. Therefore, our dimensions are:
x = 4
2x = 8
0.5x = 2
Or: 2 x 4 x 8
Example Question #752 : Sat Mathematics
A right rectangular prism has a volume of 120 cubic units. Its dimensions are such that the second dimension is three times the length of the first, and the third dimension is five times the dimension of the first. What are its exact dimensions?
2 x 5 x 12
4 x 12 x 20
2 x 6 x 10
1 x 5 x 24
None of the other answers
2 x 6 x 10
Based on our prompt, we can say that the prism has dimensions that can be represented as:
Dim1: x
Dim2: 3 * Dim1 = 3x
Dim3: 5 * Dim1 = 5x
More directly stated, therefore, our dimensions are: x, 3x, and 5x. Therefore, the volume is x * 3x * 5x = 120, which simplifies to 15x3 = 120 or x3 = 8. Solving for x, we find x = 2. Therefore, our dimensions are:
x = 2
3x = 6
5x = 10
Or: 2 x 6 x 10
Example Question #245 : Geometry
A rectangular box has a length of 2 meters, a width of 0.5 meters, and a height of 3.2 meters. How many cubes with a volume of one cubic centimeter could fit into this rectangular box?
3.2 x 102
3.2 x 10-3
3.2
3,2 x 103
3.2 x 106
3.2 x 106
In order to figure out how many cubic centimeters can fit into the box, we need to figure out the volume of the box in terms of cubic centimeters. However, the measurements of the box are given in meters. Therefore, we need to convert these measurements to centimeters and then determine the volume of the box.
There are 100 centimeters in one meter. This means that in order to convert from meters to centimeters, we must multiply by 100.
The length of the box is 2 meters, which is equal to 2 x 100, or 200, centimeters.
The width of the box is 0.5(100) = 50 centimeters.
The height of the box is 3.2(100) = 320 centimeters.
Now that all of our measurements are in centimeters, we can calculate the volume of the box in cubic centimeters. Remember that the volume of a rectangular box (or prism) is equal to the product of the length, width, and height.
V = length x width x height
V = (200 cm)(50 cm)(320 cm) = 3,200,000 cm3
To rewrite this in scientific notation, we must move the decimal six places to the left.
V = 3.2 x 106 cm3
The answer is 3.2 x 106.
Example Question #2 : Prisms
A rectangular prism has a length that is twice as long as its width, and a width that is twice as long as its height. If the surface area of the prism is 252 square units, what is the volume, in cubic units, of the prism?
432
1728
27
216
108
216
Let l be the length, w be the width, and h be the height of the prism. We are told that the length is twice the width, and that the width is twice the height. We can set up the following two equations:
l = 2w
w = 2h
Next, we are told that the surface area is equal to 252 square units. Using the formula for the surface area of the rectangular prism, we can write the following equation:
surface area = 2lw + 2lh + 2wh = 252
We now have three equations and three unknowns. In order to solve for one of the variables, let's try to write w and l in terms of h. We know that w = 2h. Because l = 2w, we can write l as follows:
l = 2w = 2(2h) = 4h
Now, let's substitute w = 2h and l = 4h into the equation we wrote for surface area.
2(4h)(2h) + 2(4h)(h) + 2(2h)(h) = 252
Simplify each term.
16h2 + 8h2 + 4h2 = 252
Combine h2 terms.
28h2 = 252
Divide both sides by 28.
h2 = 9
Take the square root of both sides.
h = 3.
This means that h = 3. Because w = 2h, the width must be 6. And because l = 2w, the length must be 12.
Because we now know the length, width, and height, we can find the volume of the prism, which is what the question ultimately requires us to find.
volume of a prism = l • w • h
volume = 12(6)(3)
= 216 cubic units
The answer is 216.
Certified Tutor