PSAT Math : Coordinate Geometry

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Equation Of A Circle

A circle has its origin at . The point  is on the edge of the circle. What is the radius of the circle?

Possible Answers:

There is not enough information to answer this question.

Correct answer:

Explanation:

The radius of the circle is equal to the hypotenuse of a right triangle with sides of lengths 5 and 7.

This radical cannot be reduced further.

Example Question #11 : How To Find The Equation Of A Circle

The endpoints of a diameter of circle A are located at points  and . What is the area of the circle?

Possible Answers:

Correct answer:

Explanation:

The formula for the area of a circle is given by A =πr2 .  The problem gives us the endpoints of the diameter of the circle. Using the distance formula, we can find the length of the diameter. Then, because we know that the radius (r) is half the length of the diameter, we can find the length of r. Finally, we can use the formula A =πr2 to find the area.

The distance formula is Actmath_7_113_q1

The distance between the endpoints of the diameter of the circle is:

To find the radius, we divide  d (the length of the diameter) by two.

Then we substitute the value of r into the formula for the area of a circle.

Example Question #152 : Coordinate Geometry

What is the equation for a circle of radius 9, centered at the intersection of the following two lines?

Possible Answers:

Correct answer:

Explanation:

To begin, let us determine the point of intersection of these two lines by setting the equations equal to each other:

To find the y-coordinate, substitute into one of the equations. Let's use :

The center of our circle is therefore .

Now, recall that the general form for a circle with center at  is

For our data, this means that our equation is:

Example Question #251 : Coordinate Geometry

A circle is centered on point .  The area of the circle is . What is the equation of the circle?

Possible Answers:

Correct answer:

Explanation:

The formula for a circle is 

 is the coordinate of the center of the circle, therefore  and .

The area of a circle:  

Therefore:

Example Question #21 : Circles

A circle with a radius of five is centered at the origin. A point on the circumference of the circle has an x-coordinate of two and a positive y-coordinate. What is the value of the y-coordinate?

Possible Answers:

Correct answer:

Explanation:

Recall that the general form of the equation of a circle centered at the origin is:

x2 + y2 = r2

We know that the radius of our circle is five. Therefore, we know that the equation for our circle is:

x2 + y2 = 52

x2 + y2 = 25

Now, the question asks for the positive y-coordinate when= 2.  To solve this, simply plug in for x:

22 + y2 = 25

4 + y2 = 25

y2 = 21

y = ±√(21)

Since our answer will be positive, it must be √(21).

Example Question #1 : How To Find X Or Y Intercept

If the equation of a line is 4y – x = 48, at what point does that line cross the x-axis?

Possible Answers:

(0,–48)

(0,–12)

(–48,0)

(48,0)

(0,12)

Correct answer:

(–48,0)

Explanation:

When the equation crosses the x-axis, y = 0.  Plug 0 into the equation for y, and solve for x

4(0) – x = 48,  –x = 48,  x = –48

Example Question #1 : How To Find X Or Y Intercept

Where does the graph of 2x + 3y = 15 cross the x-axis?

Possible Answers:

(0, -5)

(0, 5)

(0, 0)

(-7.5, 0)

(7.5, 0)

Correct answer:

(7.5, 0)

Explanation:

To find the x-intercept, set y=0 and solve for x. This gives an answer of x = 7.5.

Example Question #2 : How To Find X Or Y Intercept

The slope of a line is equal to -3/4.  If that line intersects the y-axis at (0,15), at what point does it intersect the x-axis?

Possible Answers:

15

5

-20

20

60

Correct answer:

20

Explanation:

If the slope of the line m=-3/4, when y=15 and x=0, plug everything into the equation y=mx+b.  

Solving for b:

15=(-3/4)*0 + b

b=15

y=-3/4x + 15

To get the x-axis intersect, plug in y=0 and solve for x.

0 = -3/4x + 15

3/4x = 15

3x = 15*4

x = 60/3 = 20

x=20

Example Question #1 : How To Find X Or Y Intercept

If these three points are on a single line, what is the formula for the line?

(3,3)

(4,7)

(5,11)

Possible Answers:

y = 3x - 3

y = 5x + 11

y = 3x - 9

y = 4x + 31

y = 4x - 9

Correct answer:

y = 4x - 9

Explanation:

Formula for a line: y = mx + b

First find slope from two of the points: (3,3) and (4,7)

m = slope = (y2 – y1) / x2 – x1) = (7-3) / (4-3) = 4 / 1 = 4

Solve for b by plugging m and one set of coordinates into the formula for a line:

y = mx + b

11 = 4 * 5 + b

11 = 20 + b

b = -9

y = 4x - 9

Example Question #201 : Coordinate Geometry

The slope of a line is 5/8 and the x-intercept is 16.  Which of these points is on the line?

Possible Answers:

(16, 10)

(32,30)

(32,10)

(8,15)

(0,10)

Correct answer:

(32,10)

Explanation:

y = mx + b

x intercept is 16 therefore one coordinate is (16,0)

0 = 5/8 * 16 + b

0 = 10 + b

b = -10

y = 5/8 x – 10

if x = 32

y = 5/8 * 32 – 10 = 20 – 10 = 10

 

 

Therefore (32,10)

Learning Tools by Varsity Tutors