PSAT Math : Algebra

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Divide Polynomials

What is the remainder when the polynomial  is divided by  ?

Possible Answers:

Correct answer:

Explanation:

By the remainder theorem, if a polynomial  is divided by the linear binomial , the remainder is  - that is, the polynomial evaluated at . The remainder of dividing  by  is the dividend evaluated at , which is

Example Question #1 : Multiplying And Dividing Polynomials

Simplify: 

 

Possible Answers:

Correct answer:

Explanation:

Cancel by subtracting the exponents of like terms:

Example Question #1 : Binomials

Decrease  by 40%. Which of the following will this be equal to?

Possible Answers:

Correct answer:

Explanation:

A number decreased by 40% is equivalent to 100% of the number minus 40% of the number. This is taking 60% of the number, or, equivalently, multiplying it by 0.6. 

Therefore,  decreased by 40% is 0.6 times this, or

Example Question #1 : Binomials

Find the product:

Possible Answers:

Correct answer:

Explanation:

Find the product:

Use the distributive property:

Write the resulting expression in standard form:

Example Question #21 : Polynomials

If 〖(x+y)〗= 144 and 〖(x-y)〗= 64, what is the value of xy?

 

 

Possible Answers:

18

16

20

22

Correct answer:

20

Explanation:

We first expand each binomial to get x2 + 2xy + y2 = 144  and x2 - 2xy + y2 = 64. We then subtract the second equation from the first to find 4xy = 80. Finally, we divide each side by 4 to find xy = 20.

 

 

Example Question #1 : How To Simplify Binomials

Which of these expressions can be simplified further by collecting like terms?

Possible Answers:

None of the expressions in the other choices can be simplified further

Correct answer:

None of the expressions in the other choices can be simplified further

Explanation:

A binomial can be simplified further if and only if the two terms have the same combination of variables and the same exponents for each like variable. This is not the case in any of the four binomials given, so none of the expressions can be simplified further.

Example Question #1 : Binomial Denominators

Solve for .

Possible Answers:

Correct answer:

Explanation:

Factor the expression

numerator: find two numbers that add to 2 and multiply to -8 [use 4,-2]

denominator: find two numbers that add to 5 and multiply to -14 [use 7,-2]

 

new expression:

Cancel the  and cross multiply.

Example Question #4522 : Algebra 1

Give the coefficient of  in the product  

Possible Answers:

Correct answer:

Explanation:

While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two  terms and one constant are multiplied; find the three products and add them, as follows:

 

 

 

Add: 

The correct response is .

Example Question #2 : How To Find The Value Of The Coefficient

Give the coefficient of  in the binomial expansion of .

Possible Answers:

Correct answer:

Explanation:

If the expression  is expanded, then by the binomial theorem, the  term is

or, equivalently, the coefficient of  is 

Therefore, the  coefficient can be determined by setting 

:

Example Question #1 : How To Find The Value Of The Coefficient

Give the coefficient of  in the binomial expansion of .

Possible Answers:

Correct answer:

Explanation:

If the expression  is expanded, then by the binomial theorem, the  term is

or, equivalently, the coefficient of  is 

Therefore, the  coefficient can be determined by setting 

:

Learning Tools by Varsity Tutors