All PSAT Critical Reading Resources
Example Questions
Example Question #63 : Understanding The Content Of Natural Science Passages
"Interpreting the Copernican Revolution" by Matthew Minerd (2014)
The expressions of one discipline can often alter the way that other subjects understand themselves. Among such cases are numbered the investigations of Nicolaus Copernicus. Copernicus is best known for his views concerning heliocentrism, a view which eventually obliterated many aspects of the ancient/medieval worldview, at least from the standpoint of physical science. It had always been the natural view of mankind that the earth stood at the center of the universe, a fixed point in reference to the rest of the visible bodies. The sun, stars, and planets all rotated around the earth.
With time, this viewpoint became one of the major reference points for modern life. It provided a provocative image that was used—and often abused—by many people for various purposes. For those who wished to weaken the control of religion on mankind, it was said that the heliocentric outlook proved man’s insignificance. In contrast with earlier geocentrism, heliocentrism was said to show that man is not the center of the universe. He is merely one small being in the midst of a large cosmos. However, others wished to use the “Copernican Revolution” in a very different manner. These thinkers wanted to show that there was another “recentering” that had to happen. Once upon a time, we talked about the world. Now, however, it was necessary to talk of man as the central reference point. Just as the solar system was “centered” on the sun, so too should the sciences be centered on the human person.
However, both of these approaches are fraught with problems. Those who wished to undermine the religious mindset rather misunderstood the former outlook on the solar system. The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest “sphere” above the earth was the most important being in the physical universe. Likewise, the so-called “Copernican Revolution” in physics was different from the one applied to the human person. Copernicus’ revolution showed that the human point of view was not the center, whereas the later forms of “Copernican revolution” wished to show just the opposite.
Of course, there are many complexities in the history of such important changes in scientific outlook. Nevertheless, it is fascinating to see the wide-reaching effects of such discoveries, even when they have numerous, ambiguous effects.
What does the passage say was the overall effect of the scientific revolution implied in Copernicus' discoveries?
It forever destroyed the religious outlook on the world.
It altered scientific reasoning significantly.
None of the other answers
It had broad implications for the outlooks taken by people in many disciplines.
It eliminated the need for former modes of calculating celestial movements.
It had broad implications for the outlooks taken by people in many disciplines.
Although Copernicus' discoveries had specific scientific effects, these are not the focus of this passage. From the very beginning of the selection, the passage is discussing the effects that it had on the outlook had by many people—particularly as regards the position of the human person in the cosmos. As always, stay as close to the passage as you can, otherwise you will convince yourself that another answer is possible.
Example Question #64 : Understanding The Content Of Natural Science Passages
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
Based on the passage, which of the following can we infer would be the best reason for animals living in variable arctic environments to change their fur color?
They would be faster.
They would be more difficult to see when surrounded by snow.
They would be able to find food more quickly and easily.
They would be warmer.
They would more easily be able to attract a mate.
They would be more difficult to see when surrounded by snow.
If animals that live in arctic environments change their fur color, it is likely a seasonal change from brownish fur to predominantly white fur, as we’ve seen in the examples of the Irish hare, the stoat, and the weasel. What is specific about arctic environments? Thy likely involve a lot of snow, and are quite cold. Changing fur color to white would thus blend in with the snow and make an animal harder to see, as the last sentence suggests in saying that “in such an actively carnivorous creature as a stoat or weasel, [color change] is aggressive as well, rendering the animal inconspicuous to its prey.” we’re not told anything in the passage that would support the assertion that it would make the animal warmer, or that would support any of the other answer choices.
Example Question #2 : Analyzing Cause And Effect In Science Passages
Adapted from “Feathers of Sea Birds and Wild Fowl for Bedding” from The Utility of Birds by Edward Forbush (ed. 1922)
In the colder countries of the world, the feathers and down of waterfowl have been in great demand for centuries as filling for beds and pillows. Such feathers are perfect non-conductors of heat, and beds, pillows, or coverlets filled with them represent the acme of comfort and durability. The early settlers of New England saved for such purposes the feathers and down from the thousands of wild-fowl which they killed, but as the population increased in numbers, the quantity thus furnished was insufficient, and the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.
The manner in which the feathers and down were obtained, unlike the method practiced in Iceland, did not tend to conserve and protect the source of supply. In Iceland, the people have continued to receive for many years a considerable income by collecting eider down, but there they do not “kill the goose that lays the golden eggs.” Ducks line their nests with down plucked from their own breasts and that of the eider is particularly valuable for bedding. In Iceland, these birds are so carefully protected that they have become as tame and unsuspicious as domestic fowls In North America. Where they are constantly hunted they often conceal their nests in the midst of weeds or bushes, but in Iceland, they make their nests and deposit their eggs in holes dug for them in the sod. A supply of the ducks is maintained so that the people derive from them an annual income.
In North America, quite a different policy was pursued. The demand for feathers became so great in the New England colonies about the middle of the eighteenth century that vessels were fitted out there for the coast of Labrador for the express purpose of securing the feathers and down of wild fowl. Eider down having become valuable and these ducks being in the habit of congregating by thousands on barren islands of the Labrador coast, the birds became the victims of the ships’ crews. As the ducks molt all their primary feathers at once in July or August and are then quite incapable of flight and the young birds are unable to fly until well grown, the hunters were able to surround the helpless birds, drive them together, and kill them with clubs. Otis says that millions of wildfowl were thus destroyed and that in a few years their haunts were so broken up by this wholesale slaughter and their numbers were so diminished that feather voyages became unprofitable and were given up.
This practice, followed by the almost continual egging, clubbing, shooting, etc. by Labrador fishermen, may have been a chief factor in the extinction of the Labrador duck, that species of supposed restricted breeding range. No doubt had the eider duck been restricted in its breeding range to the islands of Labrador, it also would have been exterminated long ago.
Which of the following did NOT contribute to the success and profitability of the Labrador feather voyages?
When hunted, ducks attempt to conceal their nests in the surrounding vegetation.
The ducks hunted lost all of their main feathers at one time in the summer
Fledgling ducks cannot fly
After the ducks being hunted lost their feathers, they could not fly
Ducks gathered in great numbers on islands on the coast of Labrador
When hunted, ducks attempt to conceal their nests in the surrounding vegetation.
In the passage’s third paragraph, the author writes, “As the ducks molt all their primary feathers at once in July or August and are then quite incapable of flight and the young birds are unable to fly until well grown, the hunters were able to surround the helpless birds drive them together and kill them with clubs.” This sentence tells readers that the Labrador feather voyages were helped by the fact that “ducks lose all their feathers at one time in the summer,” “after the ducks being hunted lost their feathers, they could not fly,” and “fledgling ducks cannot fly,” so none of these answer choices can be correct. This leaves us with the answer choices “Ducks gathered in great numbers on islands on the coast of Labrador” and “When hunted, ducks attempt to conceal their nests in the surrounding vegetation.” The latter of these is the correct answer; the fact that “Ducks gathered in great numbers on islands on the coast of Labrador” helped the voyages profit, but “When hunted, ducks attempt to conceal their nests in the surrounding vegetation” has nothing to do with the Labrador feather voyages. This detail is presented when describing the Icelandic practices of gathering eider down, and at any rate, would not be helpful to the voyages, as the ducks would hide their nests and likely themselves.
Example Question #2 : Understanding And Evaluating Opinions And Arguments In Narrative Science Passages
Adapted from An Introduction to Astronomy by Forest Ray Moulton (1916 ed.)
It is doubtful if any important scientific idea ever sprang suddenly into the mind of a single man. The great intellectual movements in the world have had long periods of preparation, and often many men were groping for the same truth, without exactly seizing it, before it was fully comprehended.
The foundation on which all science rests is the principle that the universe is orderly, and that all phenomena succeed one another in harmony with invariable laws. Consequently, science was impossible until the truth of this principle was perceived, at least as applied to a limited part of nature.
The phenomena of ordinary observation, as, for example, the weather, depend on such a multitude of factors that it was not easy for men in their primitive state to discover that they occur in harmony with fixed laws. This was the age of superstition, when nature was supposed to be controlled by a great number of capricious gods whose favor could be won by childish ceremonies. Enormous experience was required to dispel such errors and to convince men that the universe is one vast organization whose changes take place in conformity with laws which they can in no way alter.
The actual dawn of science was in prehistoric times, probably in the civilizations that flourished in the valleys of the Nile and the Euphrates. In the very earliest records of these people that have come down to modern times it is found that they were acquainted with many astronomical phenomena and had coherent ideas with respect to the motions of the sun, moon, planets, and stars. It is perfectly clear from their writings that it was from their observations of the heavenly bodies that they first obtained the idea that the universe is not a chaos. Day and night were seen to succeed each other regularly, the moon was found to pass through its phases systematically, the seasons followed one another in order, and in fact the more conspicuous celestial phenomena were observed to occur in an orderly sequence. It is to the glory of astronomy that it first led men to the conclusion that law reigns in the universe.
Which of the following is the best image for the author’s view of the universe?
It is relatively ordered chaos.
It is the source of the greatest of all marvels, particularly life itself.
None of the other answers
Its highest beauties are found in the stars.
It is a structured whole.
It is a structured whole.
Sometimes, the answer to a question can be found in a single sentence. In the case of this question, the answer is found in the very last sentence: "It is to the glory of astronomy that it first led men to the conclusion that law reigns in the universe." If law reigns in the universe, this means that it is an orderly whole, not deviating from its law-like course of events. This is the best answer among those provided.
Example Question #1 : Identifying And Analyzing Main Idea And Theme In Science Passages
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
How does the author feel about Howell?
The author agrees with Howell that invasive species are often problematic.
The author thinks that Howell made a great mistake in releasing Gypsy moths into the United States.
The author likes Howell because he helped identify a problem with the consequences available for environmental disruptors.
The author is annoyed by Howell’s insistence that invasive species do not cause significant problems.
The author greatly dislikes Howell for his audacious disrespect for nature.
The author greatly dislikes Howell for his audacious disrespect for nature.
Let’s look at the part of the first paragraph in which the author brings up Howell, paying attention to why he does so:
“The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law.”
In mentioning Howell, the author is providing an example supporting his argument that harsher legal penalties are necessary for those who harm the environment. The author describes Howell as a “poacher” who “destroyed our first national bison herd” and was “caught red-handed.” From this, we can tell that the best answer choice is “the author greatly dislikes Howell for his audacious disrespect for nature.”
One of the other answer choices attempts to get you to confuse Howell with Mr. Trouvelot, who released the gypsy moths—don’t fall for that! Check the passage if you are worried at all about confusing the two so you can avoid pitfall answers like that one.
Example Question #2 : Understanding Organization And Argument In Natural Science Passages
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Which of the following best describes an opinion held by the author?
It is difficult to say what the future holds for the fate of the gypsy moth in the United States.
We should introduce a new species of animal that eats gypsy moths to combat the problems they cause.
Efforts to contain the gypsy moth will improve as technology improves, until all of the moths in the United States have been eradicated.
Despite spending a great deal of money, the United States will never be rid of the gypsy moth.
Farmers should place nets around their fields and orchards to prevent the gypsy moths from getting to their crops.
Despite spending a great deal of money, the United States will never be rid of the gypsy moth.
The first sentence of the passage’s last paragraph provides the information we need to answer this question correctly: the author writes, “The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out.” We can thus definitively say that he thinks that “despite spending a great deal of money, the United States will never be rid of the gypsy moth.”
Example Question #1 : Understanding Organization And Argument In Natural Science Passages
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
The author brings up Joseph Hooker’s research in order to __________.
provide evidence in favor of the author’s theory, which disagrees with all of the previously mentioned theories
suggest that a follow-up experiment be performed to check his results
support Martins’ theory
demonstrate that the colors of flowers change at varying latitudes
disprove the theory of the "recent writer" quoted in the first paragraph
disprove the theory of the "recent writer" quoted in the first paragraph
The author brings up Joseph Hooker's research near the end of the second paragraph, stating, "By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south." This immediately follows the sentence, "The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect." In this sentence, the author is doubting the veracity of the "recent writer" quoted in the first paragraph. The author then uses Hooker's evidence to disprove the theory of the "recent writer," because if the theory of the "recent writer" were correct, there would be very few white or yellow flowers in the Arctic and many red or golden ones, and Hooker's evidence shows that this is not the case, as most of the Arctic flowers he observed were white. So, the correct answer is that the author uses Joseph Hooker's evidence to "disprove the theory of the 'recent writer' quoted in the first paragraph." "Provide evidence in favor of the author’s theory, which disagrees with all of the previously mentioned scientists' statements" cannot be the correct answer because the author is in agreement with M. Grisebach.
Example Question #2 : Determining Authorial Purpose In Narrative Science Passages
Adapted from Ice-Caves of France and Switzerland by George Forrest Browne (1865)
This account states that the cave is in the county of Thorn, among the lowest spurs of the Carpathians. The entrance, which faces the north, and is exposed to the cold winds from the snowy part of the Carpathian range, is eighteen fathoms high and nine broad; and the cave spreads out laterally, and descends to a point fifty fathoms below the entrance, where it is twenty-six fathoms in breadth, and of irregular height. Beyond this no one had at that time penetrated, on account of the unsafe footing, although many distant echoes were returned by the farther recesses of the cave; indeed, to get even so far as this, much step-cutting was necessary.
When the external frost of winter comes on, the account proceeds, the effect in the cave is the same as if fires had been lighted there: the ice melts, and swarms of flies and bats and hares take refuge in the interior from the severity of the winter. As soon as spring arrives, the warmth of winter disappears from the interior, water exudes from the roof and is converted into ice, while the more abundant supplies which pour down on to the sandy floor are speedily frozen there. In the dog-days, the frost is so intense that a small icicle becomes in one day a huge mass of ice; but a cool day promptly brings a thaw, and the cave is looked upon as a barometer, not merely feeling, but also presaging, the changes of weather. The people of the neighborhood, when employed in field-work, arrange their labour so that the mid-day meal may be taken near the cave, when they either ice the water they have brought with them, or drink the melted ice, which they consider very good for the stomach. It had been calculated that six hundred weekly carts would not be sufficient to keep the cavern free from ice. The ground above the cave is peculiarly rich in grass.
In explanation of these phenomena, Bell threw out the following suggestions, which need no comment. The earth being of itself cold and damp, the external heat of the atmosphere, by partially penetrating into the ground, drives in this native cold to the inner parts of the earth, and makes the cold there more dense. On the other hand, when the external air is cold, it draws forth towards the surface the heat there may be in the inner part of the earth, and thus makes caverns warm. In support and illustration of this view, he states that in the hotter parts of Hungary, when the people wish to cool their wine, they dig a hole two feet deep, and place in it the flagon of wine, and, after filling up the hole again, light a blazing fire upon the surface, which cools the wine as if the flagon had been laid in ice. He also suggests that possibly the cold winds from the Carpathians bring with them imperceptible particles of snow, which reach the water of the cave, and convert it into ice. Further, the rocks of the Carpathians abound in salts, niter, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.
Which of the following sentences best describes the function of the first paragraph within the passage as a whole?
A brief introduction, explaining the location and the existing knowledge about the cave and its shape
A lengthy summation of all of the information available to the author on the cave
A manifesto of what the author hopes to achieve in his study of the cave and the details he was given about it
A description of the woeful state of the cave at the time of the author's arrival there
An argument about incorrect information which is being circulated about the cave, particularly about depth
A brief introduction, explaining the location and the existing knowledge about the cave and its shape
The first paragraph introduces the topic of the cave by discussing its location and general characteristics. It does not argue, give all the information about the cave, describe the poor state of the cave, or state what the author hopes to achieve.
Example Question #2 : Understanding Organization And Argument In Natural Science Passages
Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)
Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.
I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.
Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of Tinea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.
This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."
In the third paragraph the information about Swammerdam's name for the moth serves to __________.
suggest that the bee-moth preys on other insects besides bees
show that Swammerdam was not scientific in his approach to bee keeping
show how much of a menace it has always been to bees
show that in the seventeenth century people were ill-educated in the fields of science and nature
mock the moth as something feared yet destroyable
show how much of a menace it has always been to bees
The author refers to Swammerdam's name for the moths as “the very expressive name” and as we can see the name “bee-wolf” tells us as a reader that even in Swammerdam's time the bee was a menace. The name, and its inclusion in the passage, serves to prove that the bee-moth has been long thought of as a menace to bees.
Example Question #1 : Analyzing Sequence, Organization, And Structure In Natural Science Passages
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
The main reason the author mentions Howell’s story is __________.
to provide an account that shows how bad it is that environmental offenders cannot be legally punished
to attack Howell’s actions as reprehensible
to argue for putting a fence up around Yellowstone National Park to keep out poachers
to lament the loss of the United States’ first national bison herd
to suggest that the loss of bison is a more important problem than those caused by the gypsy moth
to provide an account that shows how bad it is that environmental offenders cannot be legally punished
This question may initially seem tricky because Howell’s story accomplishes many of the answer choices’ statements: the author does attack Howell’s actions as reprehensible, and he does lament the loss of the United States’ first national bison herd. However, this are consequences of the story, not reasons why the author brought it up in the first place. The only answer choice that explains why the author mentions the story is “to provide an account that shows how bad it is that environmental offenders cannot be legally punished,” so this is the correct answer.
Certified Tutor
Certified Tutor