Precalculus : Polynomial Functions

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Find Complex Zeros Of A Polynomial Using The Fundamental Theorem Of Algebra

The polynomial \displaystyle y = x^3 - x ^ 2 - x - 15 intersects the x-axis at point \displaystyle (3,0). Find the other two solutions.

Possible Answers:

\displaystyle 1 \pm 4i

\displaystyle -1 \pm 2i

\displaystyle - 1 \pm 4i

\displaystyle -1 \pm 5 i

\displaystyle -2 \pm 4i

Correct answer:

\displaystyle -1 \pm 2i

Explanation:

Since we know that one of the zeros of this polynomial is 3, we know that one of the factors is \displaystyle x - 3. To find the other two zeros, we can divide the original polynomial by \displaystyle x - 3, either with long division or with synthetic division:

\displaystyle \begin{matrix} \underline{3}| \enspace 1 \enspace -1 \enspace -1 \enspace -15 \\\underline{ + \enspace \enspace \enspace \enspace 3 \enspace \enspace \enspace \enspace 6 \enspace \enspace \enspace 15 }\\ 1 \enspace \enspace \enspace 2 \enspace \enspace \enspace 5 \enspace \enspace \enspace 0 \end{matrix}

This gives us the second factor of \displaystyle 1x^2 + 2 x + 5. We can get our solutions by using the quadratic formula:

\displaystyle \\x = \frac{-2 \pm \sqrt{4 - 4(1)(5)}}{2} \\ \\= \frac{-2 \pm \sqrt{ 4 - 20 }}{2 } \\ \\= \frac{-2 \pm \sqrt{-16}}{2} \\ \\= \frac{-2 \pm 4i }{2}\\ \\ = -1 \pm 2i

Example Question #1 : Find Complex Zeros Of A Polynomial Using The Fundamental Theorem Of Algebra

Find all the real and complex zeroes of the following equation: \displaystyle 2x^5+x^4-2x-1

Possible Answers:

\displaystyle x=1, \frac{-1}{2}

\displaystyle x=1, -1, \frac{-1}{2}, \pm i

\displaystyle x=1, -1, \frac{-1}{2}, i

\displaystyle x=1,\frac{-1}{2}, i

\displaystyle x=1, \frac{-1}{2}, \pm i

Correct answer:

\displaystyle x=1, -1, \frac{-1}{2}, \pm i

Explanation:

First, factorize the equation using grouping of common terms:

\displaystyle 2x^5+x^4-2x-1\rightarrow x^4(2x+1)-1(2x+1)\rightarrow (x^4-1)(2x+1)\rightarrow (x+1)(x-1)(x^2+1)(2x+1)

 

Next, setting each expression in parenthesis equal to zero yields the answers.

 

\displaystyle (x+1)=0\rightarrow x=-1 \displaystyle (x-1)=0\rightarrow x=1 \displaystyle (x^2+1)=0\rightarrow x=\pm i 

\displaystyle (2x+1)=0\rightarrow x=\frac{-1}{2}

Example Question #1 : Find Complex Zeros Of A Polynomial Using The Fundamental Theorem Of Algebra

Find all the zeroes of the following equation and their multiplicity: \displaystyle g(t)=t^5-6t^3+9t

Possible Answers:

\displaystyle t=0, \pm \sqrt{3i} (multiplicity of 2 on 0, multiplicity of 1 on \displaystyle \pm \sqrt{3i}

\displaystyle t=0, \pm \sqrt{3i} (multiplicity of 1 on 0, multiplicity of 2 on \displaystyle \pm \sqrt{3i}

\displaystyle t=0, \pm \sqrt{3} (multiplicity of 1 on 0, multiplicity of 2 on \displaystyle \pm \sqrt{3}

\displaystyle t=0, \pm \sqrt{3} (multiplicity of 2 on 0, multiplicity of 1 on \displaystyle \pm \sqrt{3}

Correct answer:

\displaystyle t=0, \pm \sqrt{3} (multiplicity of 1 on 0, multiplicity of 2 on \displaystyle \pm \sqrt{3}

Explanation:

First, pull out the common t and then factorize using quadratic factoring rules:

 

This equation has solutions at two values: when \displaystyle t=0 and when 

\displaystyle (t^2-3)^2=0\rightarrow t=\pm \sqrt{3}  Therefore, But since the degree on the former equation is one and the degree on the latter equation is two, the multiplicities are 1 and 2 respectively.

Example Question #1 : Find Complex Zeros Of A Polynomial Using The Fundamental Theorem Of Algebra

Find a fourth degree polynomial whose zeroes are -2, 5, and \displaystyle -2\pm \sqrt{2i}

Possible Answers:

\displaystyle x^4-16x^2-58x-60

\displaystyle x^3-16x^2-58x-60

\displaystyle x^4-x^3-16x^2-58x-60

\displaystyle x^4+x^3+16x^2+58x-60

\displaystyle x^4+x^3-16x^2-58x-60

Correct answer:

\displaystyle x^4+x^3-16x^2-58x-60

Explanation:

This one is a bit of a journey. The expressions for the first two zeroes are easily calculated, \displaystyle (x+2) and \displaystyle (x-5) respectively. The last expression must be broken up into two equations:

 which are then set equal to zero to yield the expressions \displaystyle (x+2-i\sqrt{2}) and \displaystyle (x+2+i\sqrt{2})

Finally, we multiply together all of the parenthesized expressions, which multiplies out to \displaystyle x^4+x^3-16x^2-58x-60=0

Example Question #1 : Find Complex Zeros Of A Polynomial Using The Fundamental Theorem Of Algebra

The third degree polynomial expression \displaystyle f(x)=x^3-x^2+4x-4 has a real zero at \displaystyle x=1Find all of the complex zeroes.

Possible Answers:

\displaystyle x=\pm \sqrt{2}

\displaystyle x=\pm 2i

\displaystyle x=2\pm \sqrt{2i}

\displaystyle x=\pm 4i

\displaystyle x=2\pm 2i

Correct answer:

\displaystyle x=\pm 2i

Explanation:

First, factor the expression by grouping:

\displaystyle x^3-x^2+4x-4\rightarrow x^2(x-1)+4(x-1)\rightarrow (x^2+4)\cdot(x-1)

To find the complex zeroes, set the term \displaystyle (x^2+4) equal to zero:

\displaystyle x^2=-4\rightarrow x=\pm \sqrt{-2}=\pm 2i

Example Question #1 : Find Complex Zeros Of A Polynomial Using The Fundamental Theorem Of Algebra

Find all the real and complex zeros of the following equation: \displaystyle 2x^{5}+x^{4}-2x-1

Possible Answers:

\displaystyle x=1,-1,\frac{-1}{2},i

\displaystyle x=1,\frac{-1}{2},i

\displaystyle x=1, \frac{-1}{2},\pm i

\displaystyle x=1,\frac{-1}{2}

\displaystyle x=1, -1, \frac{-1}{2},\pm i

Correct answer:

\displaystyle x=1, -1, \frac{-1}{2},\pm i

Explanation:

First, factorize the equation using grouping of common terms:

\displaystyle 2x^{5}+x^{4}-2x-1\rightarrow x^{4}(2x+1)-1(2x+1)\rightarrow (x^{4}-1)(2x+1)\rightarrow (x+1)(x-1)(x^{2}+1)(2x+1)

Next, setting each expression in parentheses equal to zero yields the answers.

\displaystyle (x+1)=0\rightarrow x=-1(x-1)=0\rightarrow x=1(x^{2}+1)=0\rightarrow x=\pm i{(2x+1)=0\rightarrow x=\frac{-1}{2}}

Example Question #1 : Find Complex Zeros Of A Polynomial Using The Fundamental Theorem Of Algebra

Find all the zeroes of the following equation and their multiplicity: \displaystyle g(t)=t^{5}-6t^{3}+9t

Possible Answers:

\displaystyle t=0,\pm \sqrt{3} (multiplicity of 2 on 0, multiplicity of 1 on \displaystyle \pm \sqrt{3})

\displaystyle t=0,\pm \sqrt{3} (multiplicity of 1 on 0, multiplicity of 2 on \displaystyle \pm \sqrt{3})

\displaystyle t=0,\pm \sqrt{3i} (multiplicity of 2 on 0, multiplicity of 1 on \displaystyle \pm \sqrt{3i})

\displaystyle t=0,\pm \sqrt{3i} (multiplicity of 1 on 0, multiplicity of 2 on \displaystyle \pm \sqrt{3i})

Correct answer:

\displaystyle t=0,\pm \sqrt{3} (multiplicity of 1 on 0, multiplicity of 2 on \displaystyle \pm \sqrt{3})

Explanation:

First, pull out the common t and then factorize using quadratic factoring rules: \displaystyle t^{5}-6t^{3}+9t\rightarrow t(t^{4}-6t^{2}+9)\rightarrow t(t^{2}-3)^{2}

This equation has a solution as two values: when \displaystyle t=0, and when \displaystyle \left ( t^{2}-3 \right )^{2}=0\rightarrow t=\pm \sqrt{3}. Therefore, But since the degree on the former equation is one and the degree on the latter equation is two, the multiplicities are 1 and 2 respectively.

Example Question #431 : Pre Calculus

Find a fourth-degree polynomial whose zeroes are \displaystyle -2,5, and \displaystyle -2\pm \sqrt{2i}

Possible Answers:

\displaystyle x^{4}-x^{3}-16x^{2}-58x-60

\displaystyle x^{4}+x^{3}-16x^{2}-58x-60

Correct answer:

\displaystyle x^{4}+x^{3}-16x^{2}-58x-60

Explanation:

This one is a bit of a journey. The expressions for the first two zeroes are easily calculated, \displaystyle \left ( x+2 \right ) and \displaystyle \left ( x-5 \right ) respectively. The last expression must be broken up into two equations: \displaystyle x=-2-i\sqrt{2},x=-2+i\sqrt{2} which are then set equal to zero to yield the expressions \displaystyle \left ( x+2-i\sqrt{2} \right ) and \displaystyle \left ( x+2+i\sqrt{2} \right )

Finally, we multiply together all of the parenthesized expressions, which multiplies out to \displaystyle x^{4}+x^{3}-16x^{2}-58x-60=0

Example Question #432 : Pre Calculus

The third-degree polynomial expression \displaystyle f(x)=x^{3}-x^{2}+4x-4 has a real zero at \displaystyle x=1. Find all of the complex zeroes.

Possible Answers:
Explanation:

First, factor the expression by grouping: \displaystyle x^{3}-x^{2}+4x-4\rightarrow x^{2}(x-1)+4(x-1)\rightarrow (x^{2}+4)\cdot (x-1)

To find the complex zeroes, set the term \displaystyle (x^{2}+4) equal to zero: \displaystyle x^{2}=-4\rightarrow x=\pm \sqrt{-2}=\pm 2i

Example Question #1 : Descartes' Rule, Intermediate Value Theorem, Sum And Product Of Zeros

Given \displaystyle y=5x^2+14x-3, determine the sum and product of the zeros respectively.

Possible Answers:

\displaystyle \frac{7}{5},-\frac{21}{5}

\displaystyle \frac{1}{5},-3

\displaystyle \frac{16}{5}, -\frac{3}{5}

\displaystyle -\frac{14}{5},-\frac{3}{5}

\displaystyle \frac{14}{5},-\frac{3}{5}

Correct answer:

\displaystyle -\frac{14}{5},-\frac{3}{5}

Explanation:

To determine zeros of \displaystyle y=5x^2+14x-3, factorize the polynomial.

\displaystyle 5x^2+14x-3=(5x-1)(x+3)

Set each of the factorized components equal to zero and solve for \displaystyle x.

\displaystyle 5x-1=0

\displaystyle x=\frac{1}{5}

\displaystyle x+3=0

\displaystyle x=-3

The sum of the roots:

\displaystyle \frac{1}{5}+(-3)= \frac{1}{5}-\frac{15}{5}= -\frac{14}{5}

The product of the roots:

\displaystyle (\frac{1}{5})(-3)= -\frac{3}{5}

Learning Tools by Varsity Tutors