All Precalculus Resources
Example Questions
Example Question #2 : Find The Inverse Of A Function
Find the inverse of the following function.
To find the inverse of y, or
first switch your variables x and y in the equation.
Second, solve for the variable in the resulting equation.
Simplifying a number with 0 as the power, the inverse is
Example Question #5 : Find The Inverse Of A Function
Find the inverse of the following function.
Does not exist
To find the inverse of y, or
first switch your variables x and y in the equation.
Second, solve for the variable in the resulting equation.
And by setting each side of the equation as powers of base e,
Example Question #3 : Find The Inverse Of A Function
Find the inverse of the function.
To find the inverse we need to switch the variables and then solve for y.
Switching the variables we get the following equation,
.
Now solve for y.
Example Question #4 : Find The Inverse Of A Function
Find the inverse of
So we first replace every with an and every with a .
Our resulting equation is:
Now we simply solve for y.
Subtract 9 from both sides:
Now divide both sides by 10:
The inverse of
is
Example Question #3 : Find The Inverse Of A Function
What is the inverse of
To find the inverse of a function we just switch the places of all and with eachother.
So
turns into
Now we solve for
Divide both sides by
Example Question #1 : Find The Inverse Of A Function
If , what is its inverse function, ?
We begin by taking and changing the to a , giving us .
Next, we switch all of our and , giving us .
Finally, we solve for by subtracting from each side, multiplying each side by , and dividing each side by , leaving us with,
.
Example Question #4 : Find The Inverse Of A Function
Find the inverse of .
To find the inverse of the function, we switch the switch the and variables in the function.
Switching and gives
Then, solving for gives our answer:
Example Question #11 : Find The Inverse Of A Function
Find the inverse of .
To find the inverse of the function, we must swtich and variables in the function.
Switching and gives:
Solving for yields our final answer:
Example Question #12 : Find The Inverse Of A Function
Find the inverse of .
To find the inverse of the function, we can switch and in the function and solve for :
Switching and gives:
Solving for yields our final answer:
Example Question #11 : Find The Inverse Of A Function
Find the inverse of .
To find the inverse of the function, we can switch and in the function and solve for .
Switch and :
We can now solve for :
Certified Tutor
Certified Tutor