New SAT Math - No Calculator : New SAT

Study concepts, example questions & explanations for New SAT Math - No Calculator

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Add Fractions

Jesse has a large movie collection containing X movies. 1/3 of his movies are action movies, 3/5 of the remainder are comedies, and the rest are historical movies. How many historical movies does Jesse own?

Possible Answers:

(2/5)*X

(11/15)*X

(4/15)*X

(7/12)*X

(3/9)*X

Correct answer:

(4/15)*X

Explanation:

1/3 of the movies are action movies. 3/5 of 2/3 of the movies are comedies, or (3/5)*(2/3), or 6/15. Combining the comedies and the action movies (1/3 or 5/15), we get 11/15 of the movies being either action or comedy. Thus, 4/15 of the movies remain and all of them have to be historical.

Example Question #281 : New Sat

In a sample of \displaystyle 114 students, \displaystyle 18\% of them liked baseball. If there are \displaystyle 1,200 students in the entire school, how many students are likely to like baseball? 

Possible Answers:

\displaystyle 216

\displaystyle 220

\displaystyle 210

\displaystyle 240

\displaystyle 114

Correct answer:

\displaystyle 216

Explanation:

To answer this question, we need to convert \displaystyle 18\% to a decimal. \displaystyle 18\%=0.18. Now we multiply \displaystyle 1,200 by \displaystyle 0.18\displaystyle 1200\cdot 0.18=216.

Example Question #93 : Algebra

If Billy runs at a pace of \displaystyle 10\: \frac{\text{m}}{\text{sec}}, how long will it take billy to run \displaystyle 549\:\text{m}?

Possible Answers:

\displaystyle 55\:\text{sec}

\displaystyle 59\:\text{sec}

\displaystyle 50\:\text{sec}

\displaystyle 54.9\:\text{sec}

\displaystyle 54\:\text{sec}

Correct answer:

\displaystyle 54.9\:\text{sec}

Explanation:

In order to solve this, we need to set up an equation. \displaystyle 549\:\text{m}=\frac{10\:\text{m}}{\text{sec}}\cdot x, where \displaystyle x is time. All we need to do is divide by \displaystyle 10\: \frac{\text{m}}{\text{sec}} on each side.

\displaystyle 549\:\text{m}=\frac{10\:\text{m}}{\text{s}}\cdot x

\displaystyle \frac{549\:\text{m}}{\frac{10\:\text{m}}{\text{sec}}}=x

\displaystyle \frac{549\:\text{m\:sec}}{10\:\text{m}}=x

\displaystyle x=\frac{549\:\text{sec}}{10}=54.9\:\text{sec}

Example Question #94 : Algebra

Rocket \displaystyle A is launched from the ground at \displaystyle 25\:\frac{\text{m}}{\text{s}}, and Rocket \displaystyle B is launched \displaystyle 3\:\text{m} off the ground at \displaystyle 16\:\frac{m}{s}. At what time will Rocket \displaystyle A and Rocket \displaystyle B cross path's?

Possible Answers:

\displaystyle \frac{2}{3}

\displaystyle \frac{1}{3}

\displaystyle 3

\displaystyle 1

\displaystyle 2

Correct answer:

\displaystyle \frac{1}{3}

Explanation:

First we need to create equations that represent the path's of the Rocket's.

For Rocket \displaystyle A, the equation is

\displaystyle y=25x

For Rocket \displaystyle B, the equation is

\displaystyle y=16x+3

In order to solve for the time the Rocket's cross, we need to set the equations equal to each other.

\displaystyle 25x=16x+3

Now solve for \displaystyle x

\displaystyle 9x=3

\displaystyle x=\frac{1}{3}

 

 

Example Question #304 : Data Analysis

A poll was taken from a random collection of \displaystyle 1,500 people, they were asked whether they approve or disapprove GMO's. 

 

 

 

Did GMO's have a higher approval rate in September or October?

Possible Answers:

September

October

Correct answer:

October

Explanation:

To figure out which month had a higher approval rate, we need to divide the approve number by the total number of people.

\displaystyle \text{September Approval Rate}= \frac{345}{1500}=0.23=23\%

\displaystyle \text{October Approval Rate}= \frac{440}{1500}=0.29=29\%

From this, we can determine that October had the highest approval rate.

Example Question #101 : Equations / Inequalities

Screen shot 2016 02 11 at 12.33.27 pm

Calculate the slope of the line.

Possible Answers:

\displaystyle -14

\displaystyle -10

\displaystyle 0

\displaystyle 14

\displaystyle 10

Correct answer:

\displaystyle -14

Explanation:

In order to solve for the slope, we need to recall how to find the slope of a line. \displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}, where \displaystyle (x_1,y_1), (x_2, y_2) are points on the line.

So we will pick \displaystyle (-5, 80), and \displaystyle (5, -60).

\displaystyle \text{Slope}=\frac{-60-80}{5-(-5)}=\frac{-140}{10}=-14

Example Question #3064 : Sat Mathematics

Screen shot 2016 02 11 at 1.26.48 pm

Determine the mode of the Dot Plot.

Possible Answers:

\displaystyle \text{Mode}=9

\displaystyle \text{Mode}=5

\displaystyle \text{Mode}=4

\displaystyle \text{Mode}=3

\displaystyle \text{Mode}=10

Correct answer:

\displaystyle \text{Mode}=10

Explanation:

To determine the mode, we need to count how many diamonds are on each number. The mode is the most frequently occurring number. 

Since \displaystyle 10 has a frequency of \displaystyle 5, it is the mode.

Example Question #282 : New Sat

Screen shot 2016 02 11 at 1.26.48 pm

Calculate the mean from the above dot plot.

Possible Answers:

\displaystyle 7

\displaystyle 6.2

\displaystyle 7.1

\displaystyle 8

\displaystyle 5.1

Correct answer:

\displaystyle 7.1

Explanation:

To calculate the mean, we need to sum up every individual entry and divide it by the total number of entries. This looks like \displaystyle \bar{x}=\frac{x_1+x_2+\cdots x_n}{n}, where \displaystyle n is the total number of entries and \displaystyle x_1,\cdots, x_n are the individual entries.

Here is the calculation of the mean,

 

\displaystyle \bar{x}=\frac{3(4)+5(2)+6(2)+7(1)+8(3)+9(3)+10(5)}{20}

\displaystyle \bar{x}=\frac{12+10+12+7+24+27+50}{20}

 

\displaystyle \bar{x}=\frac{142}{20}=7.1

 

Example Question #283 : New Sat

If a function has x-intercepts at \displaystyle x=-2\displaystyle x=2, and at \displaystyle x=1, what is the equation?

Possible Answers:

\displaystyle f(x)=x^2-4x+4

\displaystyle f(x)=x^3+x^2-4x+4

\displaystyle f(x)=x^3-4x+4

\displaystyle f(x)=x^3-x^2-4x+4

\displaystyle f(x)=x^3+x^2+4x+4

Correct answer:

\displaystyle f(x)=x^3-x^2-4x+4

Explanation:

Since we are given the functions x-intercepts, we can write the equation as \displaystyle f(x)=(x+2)(x-2)(x-1), now we need to use FOIL.

Start with \displaystyle (x+2)(x-2).

\displaystyle (x+2)(x-2)=x^2-2x+2x-4=x^2-4

Now we do

\displaystyle (x^2-4)(x-1)=x^3-x^2-4x+4

 

Example Question #102 : Equations / Inequalities

 

What equation best represents the following table?

Possible Answers:

\displaystyle y=1000\left(\frac{1}{2}\right )^t

\displaystyle y=1000\left(\frac{1}{2}\right )^{-t}

\displaystyle y=1000\left(-\frac{1}{2}\right )^t

\displaystyle y=\left(\frac{1}{2}\right )^t

\displaystyle y=1000\left(2\right)^t

Correct answer:

\displaystyle y=1000\left(\frac{1}{2}\right )^t

Explanation:

The first step is to find the common ratio amongst the data. 

\displaystyle \frac{\text{Time 1}}{\text{Time 0}}=\frac{500}{1000}=\frac{1}{2}

\displaystyle \frac{\text{Time 2}}{\text{Time 1}}=\frac{250}{500}=\frac{1}{2}

\displaystyle \frac{\text{Time 3}}{\text{Time 2}}=\frac{125}{250}=\frac{1}{2}

\displaystyle \frac{\text{Time 4}}{\text{Time 3}}=\frac{62.5}{125}=\frac{1}{2}

\displaystyle \frac{\text{Time 5}}{\text{Time 4}}=\frac{31.25}{62.5}=\frac{1}{2}

 

We can that the common ratio is \displaystyle \frac{1}{2}.

Now we need to set up an equation that will give an answer for any time.

We can set up an exponential decay model, the general equation is,

\displaystyle y=c(1-r)^t, where \displaystyle c is the starting amount, \displaystyle r is the common ratio and \displaystyle t is time.

After plugging our numbers in, we get

\displaystyle y=1000\left( 1-\frac{1}{2}\right )^t

\displaystyle y=1000\left(\frac{1}{2}\right )^t

 

Learning Tools by Varsity Tutors