Multivariable Calculus : Multivariable Calculus

Study concepts, example questions & explanations for Multivariable Calculus

varsity tutors app store varsity tutors android store

All Multivariable Calculus Resources

14 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Matrices & Vectors

Find the equation of the tangent plane to \displaystyle z=\ln(4x^3+10y^2) at \displaystyle z=(0,5).

Possible Answers:

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y+\ln(254)

\displaystyle z=\frac{6}{127}x-\frac{50}{127}y+\frac{256}{127}+\ln(254)

\displaystyle z=-\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}-\ln(254)

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}+\ln(254)

Correct answer:

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}+\ln(254)

Explanation:

First, we need to find the partial derivatives in respect to \displaystyle x, and \displaystyle y, and plug in \displaystyle z=(1,5).

\displaystyle f(x,y)=\ln(4x^3+10y^2)\displaystyle f(0,5)=\ln(4(1)^3+10(5)^2)=\ln(254)

\displaystyle f_x(x,y)=\frac{12x^2}{4x^3+10y^2}\displaystyle f_x(0,5)=\frac{12(1)^2}{4(1)^3+10(5)^2}=\frac{12}{254}=\frac{6}{127}

\displaystyle f_y(x,y)=\frac{20y}{4x^3+10y^2}\displaystyle f_y(0,5)=\frac{20(5)}{4(1)^3+10(5)^2}=\frac{100}{254}=\frac{50}{127}

 

Remember that the general equation for a tangent plane is as follows:

\displaystyle z-f(x_0,y_0)=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)

Now lets apply this to our problem

\displaystyle z-\ln(254)=\frac{6}{127}(x-1)+\frac{50}{127}(y-5)

\displaystyle z=\frac{6}{127}(x-1)+\frac{50}{127}(y-5)+\ln(254)

\displaystyle z=\frac{6}{127}x-\frac{6}{127}+\frac{50}{127}y-\frac{250}{127}+\ln(254)

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}+\ln(254)

Example Question #1 : Multivariable Calculus

Find the equation of the tangent plane to \displaystyle z=\ln(4x^3+10y^2) at \displaystyle z=(1,5).

Possible Answers:

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}

\displaystyle z=\frac{6}{127}x-\frac{50}{127}y+\frac{256}{127}+\ln(254)

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y+\ln(254)

\displaystyle z=-\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}-\ln(254)

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}+\ln(254)

Correct answer:

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}+\ln(254)

Explanation:

First, we need to find the partial derivatives in respect to \displaystyle x, and \displaystyle y, and plug in \displaystyle z=(1,5).

\displaystyle f(x,y)=\ln(4x^3+10y^2)\displaystyle f(1,5)=\ln(4(1)^3+10(5)^2)=\ln(254)

\displaystyle f_x(x,y)=\frac{12x^2}{4x^3+10y^2}\displaystyle f_x(1,5)=\frac{12(1)^2}{4(1)^3+10(5)^2}=\frac{12}{254}=\frac{6}{127}

\displaystyle f_y(x,y)=\frac{20y}{4x^3+10y^2}\displaystyle f_y(1,5)=\frac{20(5)}{4(1)^3+10(5)^2}=\frac{100}{254}=\frac{50}{127}

 

Remember that the general equation for a tangent plane is as follows:

\displaystyle z-f(x_0,y_0)=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)

Now lets apply this to our problem

\displaystyle z-\ln(254)=\frac{6}{127}(x-1)+\frac{50}{127}(y-5)

\displaystyle z=\frac{6}{127}(x-1)+\frac{50}{127}(y-5)+\ln(254)

\displaystyle z=\frac{6}{127}x-\frac{6}{127}+\frac{50}{127}y-\frac{250}{127}+\ln(254)

\displaystyle z=\frac{6}{127}x+\frac{50}{127}y-\frac{256}{127}+\ln(254)

Example Question #2 : Matrices & Vectors

Let \displaystyle u=(2,4,5), and \displaystyle v=(-2,6,10).

Find \displaystyle u\times v.

Possible Answers:

\displaystyle u\times v=(40,-20,12)

\displaystyle u\times v=(10,-30,20)

\displaystyle u\times v=(10,30,20)

\displaystyle u\times v=(-10,30,-20)

\displaystyle u\times v=(0,-3,2)

Correct answer:

\displaystyle u\times v=(10,-30,20)

Explanation:

We are trying to find the cross product between \displaystyle u and \displaystyle v.

Recall the formula for cross product.

If  \displaystyle u=(u_x,u_y,u_z), and \displaystyle v=(v_x,v_y,v_z), then

\displaystyle u\times v=(u_yv_z-u_zv_y, -u_xv_z+u_zv_x, u_xv_y-u_yv_x).

Now apply this to our situation.

\displaystyle u\times v=(4(10)-5(6),-2(10)+5(-2), 2(6)-4(-2))

\displaystyle u\times v=(40-30,-20-10, 12+8)

\displaystyle u\times v=(10,-30,20)

Example Question #2 : Multivariable Calculus

Let \displaystyle u=(2,4,5), and \displaystyle v=(-2,6,10).

Find \displaystyle u\times v.

Possible Answers:

\displaystyle u\times v=(0,-3,2)

\displaystyle u\times v=(40,-20,12)

\displaystyle u\times v=(10,-30,20)

\displaystyle u\times v=(10,30,20)

\displaystyle u\times v=(-10,30,-20)

Correct answer:

\displaystyle u\times v=(10,-30,20)

Explanation:

We are trying to find the cross product between \displaystyle u and \displaystyle v.

Recall the formula for cross product.

If  \displaystyle u=(u_x,u_y,u_z), and \displaystyle v=(v_x,v_y,v_z), then

\displaystyle u\times v=(u_yv_z-u_zv_y, -u_xv_z+u_zv_x, u_xv_y-u_yv_x).

Now apply this to our situation.

\displaystyle u\times v=(4(10)-5(6),-2(10)+5(-2), 2(6)-4(-2))

\displaystyle u\times v=(40-30,-20-10, 12+8)

\displaystyle u\times v=(10,-30,20)

Example Question #1 : Matrices & Vectors

Write down the equation of the line in vector form that passes through the points \displaystyle (2, 10 , -6), and \displaystyle (-3, 4, 14).

Possible Answers:

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2-5t, 10+6t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-2t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 1+t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 10-6t, -6-20t\right \rangle

Correct answer:

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

Explanation:

Remember the general equation of a line in vector form:

\displaystyle \vec{r}=r_0+t\vec{v}=\left \langle x_0,y_0,z_0\right \rangle+t\left \langle a,b,c\right \rangle, where \displaystyle \left \langle x_0,y_0,z_0\right \rangle is the starting point, and \displaystyle \left \langle a,b,c\right \rangle is the difference between the start and ending points.

Lets apply this to our problem.

\displaystyle \vec{r}=\left \langle 2, 10, -6\right \rangle+t\left \langle 5, 6, -20\right \rangle

Distribute the \displaystyle t

\displaystyle \vec{r}=\left \langle 2, 10, -6\right \rangle+\left \langle 5t, 6t, -20t\right \rangle

Now we simply do vector addition to get

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

Example Question #1 : Vector Equations

Write down the equation of the line in vector form that passes through the points \displaystyle (2, 10 , -6), and \displaystyle (-3, 4, 14).

Possible Answers:

\displaystyle \vec{r}=\left \langle 2-5t, 10+6t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-2t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 1+t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 10-6t, -6-20t\right \rangle

Correct answer:

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

Explanation:

Remember the general equation of a line in vector form:

\displaystyle \vec{r}=r_0+t\vec{v}=\left \langle x_0,y_0,z_0\right \rangle+t\left \langle a,b,c\right \rangle, where \displaystyle \left \langle x_0,y_0,z_0\right \rangle is the starting point, and \displaystyle \left \langle a,b,c\right \rangle is the difference between the start and ending points.

Lets apply this to our problem.

\displaystyle \vec{r}=\left \langle 2, 10, -6\right \rangle+t\left \langle 5, 6, -20\right \rangle

Distribute the \displaystyle t

\displaystyle \vec{r}=\left \langle 2, 10, -6\right \rangle+\left \langle 5t, 6t, -20t\right \rangle

Now we simply do vector addition to get

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

Example Question #1 : Differentiation Rules

Find \displaystyle \frac{\partial f}{dz}.

\displaystyle f(x,y,z)=xyz^{10}+\frac{xy}{\ln(yz)}+10e^z+e^{xy}

Possible Answers:

\displaystyle \frac{\partial f}{dz}=10e^z

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

\displaystyle \frac{\partial f}{dz}=\frac{xy}{z\ln^2(yz)}

\displaystyle \frac{\partial f}{dz}=10xyz^9

\displaystyle \frac{\partial f}{dz}=10xyz^9+10e^z

Correct answer:

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

Explanation:

In order to find \displaystyle \frac{\partial f}{dz}, we need to take the derivative of \displaystyle f in respect to \displaystyle z, and treat \displaystyle x, and \displaystyle y as constants. We also need to remember what the derivatives of natural log, exponential functions and power functions are for single variables.

Natural Log:

\displaystyle f(x)=\ln(g(x))

\displaystyle f'(x)=\frac{g'(x)}{g(x)}

Exponential Functions:

\displaystyle f(x)=e^{g(x)}

\displaystyle f'(x)=g'(x)e^{g(x)}

Power Functions:

\displaystyle f(x)=x^n

\displaystyle f'(x)=nx^{n-1}

 

\displaystyle \frac{\partial f}{dz}=10xyz^9-xy(\ln(yz))^{-2}(\frac{y}{yz})+10e^z+0

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

Example Question #2 : Differentiation Rules

Find \displaystyle \frac{\partial f}{dx}.

\displaystyle f(x,y,z)=xyz^{10}+\frac{xy}{\ln(yz)}+10e^z+e^{xy}

Possible Answers:


\displaystyle \frac{\partial f}{dx}=\frac{y}{\ln(yz)}+ye^{xy}

\displaystyle \frac{\partial f}{dx}=yz^{10}+\frac{y}{\ln(yz)}+ye^{xy}

\displaystyle \frac{\partial f}{dx}=xyz^{10}+\frac{xy}{\ln(yz)}+ye^{xy}

\displaystyle \frac{\partial f}{dx}=yz^{10}+\frac{y}{\ln(yz)}

\displaystyle \frac{\partial f}{dx}=xz^{10}+\frac{1}{\ln(yz)}+xe^{xy}

Correct answer:

\displaystyle \frac{\partial f}{dx}=yz^{10}+\frac{y}{\ln(yz)}+ye^{xy}

Explanation:

In order to find \displaystyle \frac{\partial f}{dx}, we need to take the derivative of \displaystyle f in respect to  \displaystyle x, and treat \displaystyle y, and \displaystyle z as constants. We also need to remember what the derivatives of natural log, exponential functions and power functions are for single variables.

Natural Log:

\displaystyle f(x)=\ln(g(x))

\displaystyle f'(x)=\frac{g'(x)}{g(x)}

Exponential Functions:

\displaystyle f(x)=e^{g(x)}

\displaystyle f'(x)=g'(x)e^{g(x)}

Power Functions:

\displaystyle f(x)=x^n

\displaystyle f'(x)=nx^{n-1}

\displaystyle \frac{\partial f}{dx}=yz^{10}+\frac{y}{\ln(yz)}+0+ye^{xy}

\displaystyle \frac{\partial f}{dx}=yz^{10}+\frac{y}{\ln(yz)}+ye^{xy}

Example Question #1 : Differentiation Rules

Find \displaystyle \frac{\partial f}{dz}.

\displaystyle f(x,y,z)=xyz^{10}+\frac{xy}{\ln(yz)}+10e^z+e^{xy}

Possible Answers:

\displaystyle \frac{\partial f}{dz}=10xyz^9

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

\displaystyle \frac{\partial f}{dz}=\frac{xy}{z\ln^2(yz)}

\displaystyle \frac{\partial f}{dz}=10e^z

\displaystyle \frac{\partial f}{dz}=10xyz^9+10e^z

Correct answer:

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

Explanation:

In order to find \displaystyle \frac{\partial f}{dz}, we need to take the derivative of \displaystyle f in respect to \displaystyle z, and treat \displaystyle x, and \displaystyle y as constants. We also need to remember what the derivatives of natural log, exponential functions and power functions are for single variables.

Natural Log:

\displaystyle f(x)=\ln(g(x))

\displaystyle f'(x)=\frac{g'(x)}{g(x)}

Exponential Functions:

\displaystyle f(x)=e^{g(x)}

\displaystyle f'(x)=g'(x)e^{g(x)}

Power Functions:

\displaystyle f(x)=x^n

\displaystyle f'(x)=nx^{n-1}

 

\displaystyle \frac{\partial f}{dz}=10xyz^9-xy(\ln(yz))^{-2}(\frac{y}{yz})+10e^z+0

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

Example Question #1 : Multivariable Calculus

Determine the length of the curve \displaystyle \vec{r}(t)=\left \langle t,4\sin(2t),4\cos(2t)\right \rangle, on the interval \displaystyle 0\leq t\leq 2\pi.

Possible Answers:

\displaystyle \sqrt{65}

\displaystyle \pi

\displaystyle 1

\displaystyle 2\pi\sqrt{65}

\displaystyle 2\pi

Correct answer:

\displaystyle 2\pi\sqrt{65}

Explanation:

First we need to find the tangent vector, and find its magnitude.

\displaystyle \vec{v}(t)=\vec{r}\ '(t)=\left \langle 1, 8\cos(2t), -8\sin(2t)\right \rangle

\displaystyle \left \| \vec{v}(t)\right \|=\sqrt{1^2+(8\cos(2t))^2+(-8\sin(2t))^2}

\displaystyle \left \| \vec{v}(t)\right \|=\sqrt{1+64\cos^2(2t)+64\sin^2(2t)}

\displaystyle \left \| \vec{v}(t)\right \|=\sqrt{1+64(\cos^2(2t)+\sin^2(2t))}

\displaystyle \left \| \vec{v}(t)\right \|=\sqrt{1+64}=\sqrt{65}

 

Now we can set up our arc length integral

 

\displaystyle L=\int_{a}^{b}\left \| \vec{v}(t)\right \|dt

 

\displaystyle L=\int_{0}^{2\pi} \sqrt{65}\ dt=t\sqrt{65}\Big|_{0}^{2\pi}=2\pi\sqrt{65}

All Multivariable Calculus Resources

14 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors