Linear Algebra : Operations and Properties

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #251 : Operations And Properties

Find .

Possible Answers:

Correct answer:

Explanation:

To find the inverse of a matrix , set up an augmented matrix , as shown below:

Perform row operations on this matrix until it is in reduced row-echelon form.

The following operations are arguably the easiest:

The augmented matrix is in reduced row-echelon form . The inverse is therefore

.

 

Example Question #24 : The Inverse

.

Calculate .

Possible Answers:

 is undefined.

Correct answer:

 is undefined.

Explanation:

The matrix is not a square matrix - it has two rows and three columns - so it does not have an inverse.

Example Question #31 : The Inverse

 is a singular matrix;  is a nonsingular matrix.

Which is true of 

Possible Answers:

 must be a nonsingular matrix.

 must be a singular matrix.

 may be singular or nonsingular.

Correct answer:

 must be a singular matrix.

Explanation:

A matrix is singular - that is, without an inverse - if and only if its determinant is 0. Since  is a singular matrix and  is a nonsingular matrix, . The product of two matrices has as its determinant the product of the individual determinants, so

.

 must be singular.

Example Question #251 : Operations And Properties

A matrix  has as its determinant .

True or false: the determinant of  is .

Possible Answers:

False

True

Correct answer:

False

Explanation:

The determinant of the inverse  of matrix  is the reciprocal of the determinant of , so 

.

The statement is false.

Example Question #255 : Operations And Properties

For which of the following values of  is  a singular matrix?

Possible Answers:

 is singular regardless of the value of .

Correct answer:

 is singular regardless of the value of .

Explanation:

 is singular - that is, it has no inverse - if and only if its determinant is equal to 0. the determinant of a  matrix 

is 

Substitute appropriately:

Regardless of the value of  has determinant 0 and is a singular matrix.

Example Question #33 : The Inverse

Give  so that  is a singular matrix.

Possible Answers:

Correct answer:

Explanation:

 is a singular matrix - one without an inverse - if and only if its determinant is equal to 0. The determinant of a  matrix 

is equal to 

Substituting appropriately and setting this quantity equal to 0, solve for :

Example Question #252 : Operations And Properties

A matrix  has as its determinant .

True or false:  has as its determinant .

Possible Answers:

False

True

Correct answer:

True

Explanation:

The determinant of the inverse  of matrix  is the reciprocal of the determinant of , so 

.

The statement is true.

Example Question #33 : The Inverse

 such that .

Which of the following is equal to  ?

Possible Answers:

Correct answer:

Explanation:

The inverse of a matrix , if it exists, is 

Since ,

Example Question #256 : Operations And Properties

For which of the following values of  is  a singular matrix?

Possible Answers:

 cannot be singular for any value of .

Correct answer:

Explanation:

For any value of ,

and, equivalently,

.

 can be rewritten as 

 is singular - that is, it has no inverse - if and only if its determinant is equal to 0. The determinant of a  matrix 

is 

Substitute appropriately:

by a trigonometric identity. 

Therefore,  is singular if and only if

.

It follows that for  to be singular, 

 for some integer value .

or, equivalently,

This can be restated:

, or 

 for an odd positive or negative integer .

The only choice that fits this description is , which is the correct choice.

Example Question #333 : Linear Algebra

 is an involutory matrix. 

True or false: It follows that  is also an involutory matrix. 

Possible Answers:

False

True

Correct answer:

True

Explanation:

A matrix  is involutory if . Since  and  are the same matrix, it immediately follows that  is involutory. 

Learning Tools by Varsity Tutors