Linear Algebra : Operations and Properties

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : The Inverse

True or false:

If a matrix with four rows and four columns has an inverse, then the inverse also has four rows and four columns.

Possible Answers:

False

True

Correct answer:

True

Explanation:

The inverse of a square matrix - that is, a matrix with an equal number of rows and columns - if it exists, is equal in dimension to that matrix. Therefore, any inverse of a four-by-four matrix is itself a four-by-four matrix.

Example Question #313 : Linear Algebra

\(\displaystyle A\) and \(\displaystyle B\) are both singular two-by-two matrices. 

True or false: \(\displaystyle A + B\) must also be singular.

Possible Answers:

True

False

Correct answer:

False

Explanation:

To prove a statement false, it suffices to find one case in which the statement does not hold. We show that

\(\displaystyle A = \begin{bmatrix} 1& 0\\ 0& 0 \end{bmatrix}\) and \(\displaystyle B= \begin{bmatrix} 0& 0\\ 0& 1 \end{bmatrix}\)

provide a counterexample.

A matrix is singular - that is, without an inverse - if and only if its determinant is equal to zero. The determinant of a two-by-two matrix is equal to the product of its upper left to lower right entries minus that of its upper right to lower left entries, so:

\(\displaystyle \det A = 1 \cdot 0 - 0 \cdot 0 = 0 - 0 = 0\)

\(\displaystyle \det B = 0 \cdot 1 - 0 \cdot 0 = 0 - 0 = 0\)

Both \(\displaystyle A\) and \(\displaystyle B\) are singular. 

Now add the matrices by adding them term by term. 

\(\displaystyle A+ B\)

\(\displaystyle = \begin{bmatrix} 1& 0\\ 0& 0 \end{bmatrix} + \begin{bmatrix} 0& 0\\ 0& 1 \end{bmatrix}\)

\(\displaystyle = \begin{bmatrix} 1+0& 0+0\\ 0+0 & 0+1 \end{bmatrix}\)

\(\displaystyle = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)

This is simply the two-by-two identity, which has an inverse - namely, itself. 

The statement has been proved false by counterexample.

Example Question #21 : The Inverse

\(\displaystyle A\) and \(\displaystyle B\) are both two-by-two matrices. \(\displaystyle AB\) has an inverse. 

True or false: Both \(\displaystyle A\) and \(\displaystyle B\) have inverses.

Possible Answers:

False

True

Correct answer:

True

Explanation:

A matrix is nonsingular - that is, it has an inverse - if and only if its determinant is nonzero. Also, the determinant of the product of two matrices is equal to the product of their individual determinants. Combining these ideas:

\(\displaystyle \det AB = \det A \cdot \det B\)

If either \(\displaystyle \det A = 0\) or \(\displaystyle \det B = 0\), then it must hold that

\(\displaystyle \det AB = 0 \cdot 0 = 0\).

Equivalently, if either \(\displaystyle A\) or \(\displaystyle B\) has no inverse, then \(\displaystyle AB\) has no inverse. Contrapositively, if \(\displaystyle AB\) has an inverse, it must hold that each of \(\displaystyle A\) and \(\displaystyle B\) has an inverse.

Example Question #22 : The Inverse

\(\displaystyle A\) and \(\displaystyle B\) are both nonsingular two-by-two matrices. 

True or false: \(\displaystyle A + B\) must also be nonsingular.

Possible Answers:

False

True

Correct answer:

False

Explanation:

We can prove that the sum of two nonsingular matrices need not be nonsingular by counterexample. 

Let \(\displaystyle A = \begin{bmatrix} 1& 0\\ 0& 1 \end{bmatrix}\) , \(\displaystyle B= \begin{bmatrix} -1& 0\\ 0& -1 \end{bmatrix}\).

A matrix is nonsingular - that is, with an inverse - if and only if its determinant is nonzero. The determinant of a two-by-two matrix is equal to the product of its upper left to lower right entries minus that of its upper right to lower left entries, so:

\(\displaystyle \det A = 1 \cdot 1 - 0 \cdot 0 = 1 -0 = 1\)

\(\displaystyle \det B = -1 \cdot (-1) - 0 \cdot 0 = 1 -0 = 1\)

Both \(\displaystyle A\) and \(\displaystyle B\) are nonsingular.

Now add the matrices by adding them term by term. 

\(\displaystyle A + B= \begin{bmatrix} 1& 0\\ 0& 1 \end{bmatrix}+ \begin{bmatrix} -1& 0\\ 0& -1 \end{bmatrix}\)

\(\displaystyle = \begin{bmatrix} 1+ (-1)& 0+0 \\ 0+0& 1+ (-1) \end{bmatrix}\)

\(\displaystyle = \begin{bmatrix} 0 & 0 \\0 & 0 \end{bmatrix}\),

the zero matrix, whose determinant is 0 and which is therefore not nonsingular.

Example Question #22 : The Inverse

\(\displaystyle R\) is a singular four-by-four matrix. True or false: \(\displaystyle 5R\) must also be a singular matrix.

Possible Answers:

False

True

Correct answer:

True

Explanation:

A matrix is singular - that is, it has no inverse - if and only if its determinant is equal to 0. \(\displaystyle R\) is singular, so 

\(\displaystyle \det R = 0\).

The determinant of the scalar product of \(\displaystyle c\) and an \(\displaystyle n \times n\) matrix \(\displaystyle R\) is

\(\displaystyle \det (cR) = c^{n}(\det R)\)

setting \(\displaystyle c = 5\)\(\displaystyle n = 4\)\(\displaystyle \det R = 0\):

\(\displaystyle \det (5R) = 5^{4 } \cdot 0\)

\(\displaystyle \det (5R) = 0\)

Therefore, \(\displaystyle 5R\), having determinant 0, is also singular.

Example Question #241 : Operations And Properties

\(\displaystyle R\) is a nonsingular matrix.

True or false: the inverse of the matrix \(\displaystyle 3R\) is \(\displaystyle \frac{1}{3}R^{-1}\).

Possible Answers:

False

True

Correct answer:

True

Explanation:

By definition, 

\(\displaystyle R R^{-1} = I\) and \(\displaystyle R^{-1}R = I\).

Multiply:

\(\displaystyle 3R \cdot \frac{1}{3}R^{-1} = 3 \cdot \frac{1}{3} \cdot RR^{-1} = 1 \cdot I = I\)

Similarly,

\(\displaystyle \frac{1}{3}R^{-1}\cdot 3R = \frac{1}{3} \cdot 3 \cdot R^{-1} R= 1 \cdot I = I\)

Therefore, \(\displaystyle \frac{1}{3}R^{-1}\) is the inverse of \(\displaystyle 3R\).

Example Question #24 : The Inverse

True or False: If \(\displaystyle A\)\(\displaystyle B\) are square and invertible matrices then \(\displaystyle AB\) is also invertible.

Possible Answers:

True

False

Correct answer:

True

Explanation:

To prove \(\displaystyle AB\) is invertible, we need to find another square matrix \(\displaystyle D\) such that \(\displaystyle D(AB)=(AB)D = I\).

Since \(\displaystyle A^{-1},B^{-1}\) exist, take \(\displaystyle D = B^{-1}A^{-1}\), then we have

\(\displaystyle D(AB)=(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}B = I\),

and

\(\displaystyle (AB)D = (AB)(B^{-1}A^{-1})=A(BB^{-1})A^{-1}=AA^{-1} = I\).

Hence \(\displaystyle AB\) is invertible.

Example Question #322 : Linear Algebra

Suppose that \(\displaystyle A\) is an invertible matrix. Simplify \(\displaystyle AAA^{-1}AAA^{-1}A^{-1}A\).

Possible Answers:

\(\displaystyle A^3\)

\(\displaystyle A^2\)

\(\displaystyle A\)

\(\displaystyle A^{-1}\)

Correct answer:

\(\displaystyle A^2\)

Explanation:

To simplify

\(\displaystyle AAA^{-1}AAA^{-1}A^{-1}A\)

we used the identities:

\(\displaystyle AA^{-1}=A^{-1}A=I\)

\(\displaystyle AI=IA=A\)

so we get

\(\displaystyle AAA^{-1}AAA^{-1}A^{-1}A=A(AA^{-1})A(AA^{-1})(A^{-1}A)=AIAII=AA=A^2\)

Example Question #322 : Linear Algebra

Suppose that \(\displaystyle A,B,C\) are all invertible. What is the inverse of \(\displaystyle ABC\)?

Possible Answers:

\(\displaystyle C^{-1}A^{-1}B^{-1}\)

\(\displaystyle C^{-1}B^{-1}A^{-1}\)

\(\displaystyle A^{-1}B^{-1}C^{-1}\)

\(\displaystyle C^{-1}A^{-1}A^{-1}\)

Correct answer:

\(\displaystyle C^{-1}B^{-1}A^{-1}\)

Explanation:

The inverse of \(\displaystyle ABC\) is \(\displaystyle C^{-1}B^{-1}A^{-1}\) since we can multiply it by \(\displaystyle ABC\) to get:

\(\displaystyle C^{-1}B^{-1}A^{-1}ABC=C^{-1}B^{-1}(A^{-1}A)BC=C^{-1}B^{-1}IBC\)

\(\displaystyle =C^{-1}B^{-1}BC=C^{-1}(B^{-1}B)C=C^{-1}C=I\)

Therefore \(\displaystyle C^{-1}B^{-1}A^{-1}\) is the inverse of \(\displaystyle ABC\)

Example Question #248 : Operations And Properties

\(\displaystyle A = \begin{bmatrix} 1 + i & 1 - i \\ 2 & -2 \end{bmatrix}\)

Find \(\displaystyle A^{-1}\).

Possible Answers:

\(\displaystyle A ^{-1}= \begin{bmatrix} -\frac{1}{2}i & - \frac{1}{2} \\ \\ \frac{1}{4} + \frac{1}{4} i & \frac{1}{4} - \frac{1}{4} i\end{bmatrix}\)

\(\displaystyle A ^{-1}= \begin{bmatrix} \frac{1}{2} & \frac{1}{4} - \frac{1}{4} i \\ \\ \frac{1}{2} & -\frac{1}{4} - \frac{1}{4} i\end{bmatrix}\)

\(\displaystyle A ^{-1}= \begin{bmatrix} -\frac{1}{2}i & \frac{1}{4} + \frac{1}{4} i \\ \\- \frac{1}{2} i& \frac{1}{4} - \frac{1}{4} i\end{bmatrix}\)

\(\displaystyle A ^{-1}= \begin{bmatrix} \frac{1}{2} &\frac{1}{2} \\ \\ \frac{1}{4} - \frac{1}{4} & -\frac{1}{4} - \frac{1}{4} i\end{bmatrix}\)

\(\displaystyle A\) does not have an inverse.

Correct answer:

\(\displaystyle A ^{-1}= \begin{bmatrix} \frac{1}{2} & \frac{1}{4} - \frac{1}{4} i \\ \\ \frac{1}{2} & -\frac{1}{4} - \frac{1}{4} i\end{bmatrix}\)

Explanation:

The inverse of a two-by-two matrix

\(\displaystyle A= \begin{bmatrix} a & b \\ c & d \end{bmatrix}\) 

is

\(\displaystyle A{-1}=\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\)

Substituting the entries in the matrix for the variables:

\(\displaystyle A ^{-1}=\frac{1}{(1+i)(-2) - (1-i)(2)} \begin{bmatrix} -2 & -1 + i \\- 2 & 1 + i \end{bmatrix}\)

\(\displaystyle A ^{-1}=\frac{1}{-2-2i - (2-2i)} \begin{bmatrix} -2 & -1 + i \\- 2 & 1 + i \end{bmatrix}\)

\(\displaystyle A ^{-1}=\frac{1}{-4} \begin{bmatrix} -2 & -1 + i \\- 2 & 1 + i \end{bmatrix}\)

\(\displaystyle A ^{-1}= \begin{bmatrix} \frac{1}{2} & \frac{1}{4} - \frac{1}{4} i \\ \\ \frac{1}{2} & -\frac{1}{4} - \frac{1}{4} i\end{bmatrix}\)

Learning Tools by Varsity Tutors