Linear Algebra : Linear Algebra

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Norms

Find the norm of the vector \displaystyle \vec{v}= (4, 2, -5 )

Possible Answers:

\displaystyle 5

\displaystyle 3

\displaystyle 9

\displaystyle 3 \sqrt{5}

\displaystyle 5 \sqrt{2}

Correct answer:

\displaystyle 3 \sqrt{5}

Explanation:

\displaystyle || \vec{v} || = \sqrt{ 4^2 + 2^2 + (-5)^2 } = \sqrt{16 + 4 + 25 } = \sqrt{45}

This can be simplified:

\displaystyle \sqrt{3 \cdot 3 \cdot 5 } = 3 \sqrt {5}

Example Question #1 : Norms

Find the norm of the vector \displaystyle \vec{v} = (2, -3, -6 )

Possible Answers:

\displaystyle \sqrt{23}

\displaystyle 6

\displaystyle \sqrt{41 }

\displaystyle 7

Correct answer:

\displaystyle 7

Explanation:

\displaystyle || \vec{v} || = \sqrt{ 2^2 + (-3)^2 + (-6)^2 } = \sqrt{4 + 9 + 36 } = \sqrt{49} = 7

Example Question #221 : Linear Algebra

Find the norm of the vector \displaystyle \vec{v} = (3, -2, -2)

Possible Answers:

\displaystyle \sqrt{7}

\displaystyle \sqrt{15}

\displaystyle 1

\displaystyle \sqrt{17}

Correct answer:

\displaystyle \sqrt{17}

Explanation:

\displaystyle || \vec{v} || = \sqrt{3^2 + (-2)^2 + (-2)^2 } = \sqrt{9+4+4} = \sqrt{17}

Example Question #222 : Linear Algebra

Find the norm of the vector \displaystyle \vec{v} = (4, -1, 3 )

Possible Answers:

\displaystyle \sqrt{6}

\displaystyle \sqrt{26}

\displaystyle \sqrt{24}

\displaystyle 5

Correct answer:

\displaystyle \sqrt{26}

Explanation:

\displaystyle || \vec{v} || = \sqrt{ 4^2 + (-1)^2 + 3^2 } = \sqrt{16+1+9 } = \sqrt{26}

Example Question #223 : Linear Algebra

Find the norm of the vector \displaystyle \vec{v} = (3, 4, 5 )

Possible Answers:

\displaystyle 2 \sqrt{3}

\displaystyle 5 \sqrt{2}

\displaystyle 2\sqrt{5}

\displaystyle 3 \sqrt{2}

Correct answer:

\displaystyle 5 \sqrt{2}

Explanation:

\displaystyle || \vec{v} || = \sqrt{ 3^2 + 4^2 + 5^2 } = \sqrt{9+16+25} = \sqrt{50 }

This can be simplified:

\displaystyle \sqrt{2 \cdot 5 \cdot 5 } = 5 \sqrt{2 }

Example Question #144 : Operations And Properties

Let \displaystyle \textbf{u} = (2, 3, a, 1 ) for some real number \displaystyle a.

Give \displaystyle a such that \displaystyle \left \| \textbf{u} \right \| = 4.

Possible Answers:

\displaystyle -2

\displaystyle \pm \sqrt{2}

\displaystyle \pm \frac{16}{13}

\displaystyle \frac{2}{3}

\displaystyle \pm \frac{4 \sqrt{13}}{13}

Correct answer:

\displaystyle \pm \sqrt{2}

Explanation:

\displaystyle \left \| \textbf{u} \right \|, the norm, or length, of vector \displaystyle \textbf{u}, is equal to the square root of the sum of the squares of its elements. Therefore, 

\displaystyle \left \| \textbf{u} \right \| = \sqrt{2^{2}+3^{2}+a^{2}+1^{2}}

\displaystyle = \sqrt{4+9+a^{2}+1}

\displaystyle = \sqrt{ a^{2}+14}

Set this equal to 4:

\displaystyle \sqrt{ a^{2}+14} = 4

\displaystyle a^{2}+14 = 16

\displaystyle a^{2}= 2

\displaystyle a = \pm \sqrt{2}

Example Question #145 : Operations And Properties

\displaystyle \textbf{u}= (-3, 2, x, x),

where \displaystyle x is a real number.

In terms of \displaystyle x, give \displaystyle \left \| \textbf{u} \right \|.

Possible Answers:

\displaystyle \sqrt{2x-1}

\displaystyle x \sqrt{6}

\displaystyle \sqrt{2 x ^{2} +13}

\displaystyle \sqrt{2x+5}

\displaystyle \sqrt{2 x ^{2} -5}

Correct answer:

\displaystyle \sqrt{2 x ^{2} +13}

Explanation:

\displaystyle \left \| \textbf{u} \right \|, the norm, or length, of vector \displaystyle \textbf{u}, is equal to the square root of the sum of the squares of its elements. Therefore, 

\displaystyle \left \| \textbf{u} \right \|= \sqrt{(-3)^{2}+ 2 ^{2}+ x ^{2} +x ^{2}}

\displaystyle =\sqrt{9+4+ x ^{2} +x ^{2}}

\displaystyle =\sqrt{2 x ^{2} +13}

Example Question #146 : Operations And Properties

\displaystyle \bold{v} = \left ( \frac{1}{3}, - \frac{1}{3},\frac{1}{3} \right ) 

True or false: \displaystyle \textbf{v} is an example of a unit vector.

Possible Answers:

True

False

Correct answer:

False

Explanation:

\displaystyle \textbf{v} is a unit vector if and only if its norm, or length, \displaystyle \left \| \textbf{v} \right \| - the square root of the sum of the squares of its elements - is equal to 1. Find the length using this definition: 

\displaystyle \left \| \textbf{v} \right \| = \sqrt{\left ( \frac{1}{3} \right )^{2}+ \left ( -\frac{1}{3} \right )^{2}+ \left ( \frac{1}{3} \right )^{2}}

\displaystyle = \sqrt{\frac{1}{9}+ \frac{1}{9} + \frac{1}{9} }

\displaystyle = \sqrt{\frac{1}{3} }

\displaystyle \left \| \textbf{v} \right \| \ne 1, so \displaystyle \textbf{v} is not a unit vector.

Example Question #14 : Norms

\displaystyle \bold{v} = \left ( \frac{1}{2},\frac{ \sqrt{2}}{2}, -\frac{1}{2} \right ) 

True or false: \displaystyle \textbf{v} is an example of a unit vector.

Possible Answers:

False

True

Correct answer:

True

Explanation:

\displaystyle \textbf{v} is a unit vector if and only if its norm, or length, \displaystyle \left \| \textbf{v} \right \| - the square root of the sum of the squares of its elements - is equal to 1. Find the length using this definition: 

 

\displaystyle \left \| \textbf{v} \right \| = \sqrt{\left ( \frac{1}{2} \right )^{2}+ \left ( \frac{\sqrt{2}}{2} \right ) ^{2}+ \left ( -\frac{1}{2} \right ) ^{2}}

\displaystyle =\sqrt{ \frac{1}{4} + \frac{2}{4} + \frac{1}{4} }

\displaystyle =\sqrt{1}

\displaystyle =1

\displaystyle \textbf{v} is a unit vector.

Example Question #15 : Norms

Which of these functions could be that of a Euclidean norm operator? You may assume each function is onto.

Possible Answers:

All of the other answers are norm operators

\displaystyle h: \mathbb{N}^3 \rightarrow \mathbb{Q}

\displaystyle f:\mathbb{R}^7 \rightarrow \mathbb{R}

\displaystyle g: \mathbb{Q}^2 \rightarrow \mathbb{N}

Correct answer:

\displaystyle f:\mathbb{R}^7 \rightarrow \mathbb{R}

Explanation:

This function's range is \displaystyle \mathbb{R}, the set of all real numbers. In short, this is set of all possible "distances between two given numbers" in elementary linear algebra. \displaystyle h would not be a norm. For example, \displaystyle h(1,1,1) = \sqrt{1+1+1} =\sqrt{3}, which is not a rational number (part of \displaystyle \mathbb{Q}). Similarly, \displaystyle g is also not a norm. We have\displaystyle g(1,1) = \sqrt{1+1} = \sqrt{2}, which is not a natural number.

Learning Tools by Varsity Tutors