All ISEE Upper Level Reading Resources
Example Questions
Example Question #21 : Ideas In Science Passages
Adapted from “The Progress of Medical Education in the United States” in the Scientific American Supplement No. 1157 Vol. XLV (March 5th, 1898)
It is pleasing to note and it augurs well for the future that a decided advance has been made in the direction of a more thorough medical training in America, yet at the same time it is discouraging to observe that, despite these progressive steps, competition does not abate, but rather daily becomes more acute.
There is now a grand total of one hundred and fifty-four medical schools in America. To make a telling comparison, the total number of medical schools in Austria and Germany, with a population exceeding that of this country, is twenty-nine. Great Britain, with more than half the population, has seventeen; while Russia, with one hundred million inhabitants, has nine. Of course we do not argue that America, with her immense territory and scattered population, does not need greater facilities for the study of medicine than do thickly inhabited countries, as Germany and Great Britain; but we do contend that when a city of the size of St. Louis has as many schools as Russia, the craze for multiplying these schools is being carried to absurd and harmful lengths.
However, that the number of schools and their yearly supply of graduates of medicine are far beyond the demand is perfectly well known to all. The Medical Record and other medical journals have fully discussed and insisted upon that point for a considerable time. The real question at issue is by what means to remedy or at least to lessen the bad effects of the system as quickly as possible.
The first and most important steps toward this desirable consummation have been already taken, and when a four years' course comes into practice throughout the country, the difficult problem of checking excessive competition will at any rate be much nearer its solution. Why should France, Germany, Great Britain and other European nations consider that a course of from five to seven years is not too long to acquire a good knowledge of medical work, while in many parts of America two or three years' training is esteemed ample for the manufacture of a full-fledged doctor? Such methods are unfair both to the public and to the medical profession.
The primary argument of this passage is that __________.
American medical education has never been healthier or better equipped than in the last few years.
The medical education in Europe is far superior to the medical education in the United States.
Becoming a doctor in American requires less study than does becoming a doctor in one of many other countries.
American medical education is suffering from a variety of ills.
American medical schools have courses which are far too easy to pass.
American medical education is suffering from a variety of ills.
The primary argument of this passage is that American medical education is suffering from more than one major problem. The author argues that there are too many universities and that European education has greatly surpassed that which is offered in America. Answering this question correctly requires you to understand how the various arguments made by the author combine into one larger point, rather than taking each of the points made by the author as the primary argument.
Example Question #22 : Ideas In Science Passages
Adapted from “The Progress of Medical Education in the United States” in the Scientific American Supplement No. 1157 Vol. XLV (March 5th, 1898)
It is pleasing to note and it augurs well for the future that a decided advance has been made in the direction of a more thorough medical training in America, yet at the same time it is discouraging to observe that, despite these progressive steps, competition does not abate, but rather daily becomes more acute.
There is now a grand total of one hundred and fifty-four medical schools in America. To make a telling comparison, the total number of medical schools in Austria and Germany, with a population exceeding that of this country, is twenty-nine. Great Britain, with more than half the population, has seventeen; while Russia, with one hundred million inhabitants, has nine. Of course we do not argue that America, with her immense territory and scattered population, does not need greater facilities for the study of medicine than do thickly inhabited countries, as Germany and Great Britain; but we do contend that when a city of the size of St. Louis has as many schools as Russia, the craze for multiplying these schools is being carried to absurd and harmful lengths.
However, that the number of schools and their yearly supply of graduates of medicine are far beyond the demand is perfectly well known to all. The Medical Record and other medical journals have fully discussed and insisted upon that point for a considerable time. The real question at issue is by what means to remedy or at least to lessen the bad effects of the system as quickly as possible.
The first and most important steps toward this desirable consummation have been already taken, and when a four years' course comes into practice throughout the country, the difficult problem of checking excessive competition will at any rate be much nearer its solution. Why should France, Germany, Great Britain and other European nations consider that a course of from five to seven years is not too long to acquire a good knowledge of medical work, while in many parts of America two or three years' training is esteemed ample for the manufacture of a full-fledged doctor? Such methods are unfair both to the public and to the medical profession.
The author of this passage would most likely desire __________.
fewer medical schools operating under a higher standard
a similar number of medical schools with an improvement in resources provided to them
more medical schools operating under a higher standard
a more challenging entrance exam into medical schools and a greater inclusion of minorities
a national medical curriculum fixed at a two year course.
fewer medical schools operating under a higher standard
Answering this question requires you to understand the primary themes and arguments of the essay—namely, that the author believes there are too many medical schools and that they are operating under a standard that is too easy. This can most clearly be seen with the author’s comments about how short the courses are and how many doctors graduate from medical school and then have to do the bulk of their learning on the job. That the author thinks there are too many medical schools can be understood from his comparisons between America and Europe, where he seems to be supporting the European model of far fewer universities. You may therefore determine that the author of this passage would want “fewer medical schools operating under a higher standard.”
Example Question #21 : Main Idea
Adapted from "How the Soil is Made" by Charles Darwin in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Worms have played a more important part in the history of the world than most persons would at first suppose. In almost all humid countries they are extraordinarily numerous, and for their size possess great muscular power. In many parts of England a weight of more than ten tons (10,516 kilograms) of dry earth annually passes through their bodies and is brought to the surface on each acre of land, so that the whole superficial bed of vegetable mould passes through their bodies in the course of every few years. From the collapsing of the old burrows, the mold is in constant though slow movement, and the particles composing it are thus rubbed together. Thus the particles of earth, forming the superficial mold, are subjected to conditions eminently favorable for their decomposition and disintegration. This keeps the surface of the earth perfectly suited to the growth of an abundant array of fruits and vegetables.
Worms are poorly provided with sense-organs, for they cannot be said to see, although they can just distinguish between light and darkness; they are completely deaf, and have only a feeble power of smell; the sense of touch alone is well developed. They can, therefore, learn little about the outside world, and it is surprising that they should exhibit some skill in lining their burrows with their castings and with leaves, and in the case of some species in piling up their castings into tower-like constructions. But it is far more surprising that they should apparently exhibit some degree of intelligence instead of a mere blind, instinctive impulse, in their manner of plugging up the mouths of their burrows. They act in nearly the same manner as would a man, who had to close a cylindrical tube with different kinds of leaves, petioles, triangles of paper, etc., for they commonly seize such objects by their pointed ends. But with thin objects a certain number are drawn in by their broader ends. They do not act in the same unvarying manner in all cases, as do most of the lower animals.
What “important part in the history of the world” does the author believe worms have played?
They provide food for birds, maintaining bird populations around the world.
They consume waste, keeping the earth clean and healthy.
They recycle the surface layer of soil, keeping it fresh and fertile.
They demonstrate intelligence, providing evidence of non-human sentience.
They break up rocks, keeping the earth level and flat.
They recycle the surface layer of soil, keeping it fresh and fertile.
The first paragraph is essentially one long explanation about the very important role that worms have played in history of the world. The author begins by saying “Worms have played a more important part in the history of the world than most persons would at first suppose.” The author then goes on to describe the process by which they play this “important part.” And, finally, he concludes by saying “This keeps the surface of the earth perfectly suited to the growth of an abundant array of fruits and vegetables.” The key is to focus on the relationship between the opening and closing sentences of the first paragraph.
Example Question #23 : Ideas In Science Passages
Adapted from On the Origin of Species by Charles Darwin (1859)
How will the struggle for existence, discussed too briefly in the last chapter, act in regard to variation? Can the principle of selection, which we have seen is so potent in the hands of man, apply in nature? I think we shall see that it can act most effectually. Let it be borne in mind in what an endless number of strange peculiarities our domestic productions, and, in a lesser degree, those under nature, vary; and how strong the hereditary tendency is. Under domestication, it may be truly said that the whole organization becomes in some degree plastic. Let it be borne in mind how infinitely complex and close-fitting are the mutual relations of all organic beings to each other and to their physical conditions of life. Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind? On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favorable variations and the rejection of injurious variations, I call Natural Selection. Variations neither useful nor injurious would not be affected by natural selection, and would be left a fluctuating element, as perhaps we see in the species called polymorphic.
We shall best understand the probable course of natural selection by taking the case of a country undergoing some physical change, for instance, of climate. The proportional numbers of its inhabitants would almost immediately undergo a change, and some species might become extinct. We may conclude, from what we have seen of the intimate and complex manner in which the inhabitants of each country are bound together, that any change in the numerical proportions of some of the inhabitants, independently of the change of climate itself, would most seriously affect many of the others. If the country were open on its borders, new forms would certainly immigrate, and this also would seriously disturb the relations of some of the former inhabitants. Let it be remembered how powerful the influence of a single introduced tree or mammal has been shown to be. But in the case of an island, or of a country partly surrounded by barriers, into which new and better adapted forms could not freely enter, we should then have places in the economy of nature which would assuredly be better filled up, if some of the original inhabitants were in some manner modified; for, had the area been open to immigration, these same places would have been seized on by intruders. In such case, every slight modification, which in the course of ages chanced to arise, and which in any way favoured the individuals of any of the species, by better adapting them to their altered conditions, would tend to be preserved; and natural selection would thus have free scope for the work of improvement.
The main topic of this passage is __________.
problems between spouses
science and evolution
none of these answers
faith in a higher power
changes between parents and children
science and evolution
The passage seems focused on science and the progression of species over time. The language has mostly to do with "organic beings" and their evolution over time.
Example Question #1 : Identifying And Analyzing Supporting Ideas In Science Passages
Adapted from On the Origin of Species by Charles Darwin (1859)
How will the struggle for existence, discussed too briefly in the last chapter, act in regard to variation? Can the principle of selection, which we have seen is so potent in the hands of man, apply in nature? I think we shall see that it can act most effectually. Let it be borne in mind in what an endless number of strange peculiarities our domestic productions, and, in a lesser degree, those under nature, vary; and how strong the hereditary tendency is. Under domestication, it may be truly said that the whole organization becomes in some degree plastic. Let it be borne in mind how infinitely complex and close-fitting are the mutual relations of all organic beings to each other and to their physical conditions of life. Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind? On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favorable variations and the rejection of injurious variations, I call Natural Selection. Variations neither useful nor injurious would not be affected by natural selection, and would be left a fluctuating element, as perhaps we see in the species called polymorphic.
We shall best understand the probable course of natural selection by taking the case of a country undergoing some physical change, for instance, of climate. The proportional numbers of its inhabitants would almost immediately undergo a change, and some species might become extinct. We may conclude, from what we have seen of the intimate and complex manner in which the inhabitants of each country are bound together, that any change in the numerical proportions of some of the inhabitants, independently of the change of climate itself, would most seriously affect many of the others. If the country were open on its borders, new forms would certainly immigrate, and this also would seriously disturb the relations of some of the former inhabitants. Let it be remembered how powerful the influence of a single introduced tree or mammal has been shown to be. But in the case of an island, or of a country partly surrounded by barriers, into which new and better adapted forms could not freely enter, we should then have places in the economy of nature which would assuredly be better filled up, if some of the original inhabitants were in some manner modified; for, had the area been open to immigration, these same places would have been seized on by intruders. In such case, every slight modification, which in the course of ages chanced to arise, and which in any way favoured the individuals of any of the species, by better adapting them to their altered conditions, would tend to be preserved; and natural selection would thus have free scope for the work of improvement.
A supporting idea in this passage can best be described as __________.
Darwin is tired of studying species and is confused
it is difficult to be an animal
life is long and tiring and sometimes species give up
none of these answers
certain species and breeds have historically survived while others haven't
certain species and breeds have historically survived while others haven't
The passage suggests that, over time, certain species and breeds have survived and some have died out. This process has happened over time, Darwin suggests. He does not state that some species simply give up.
Example Question #6 : Analyzing Sequence In Natural Science Passages
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. “The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
Data gathered from a survey of the colors of different types of Arctic flowers is presented __________.
at the beginning of the second paragraph
at the end of the second paragraph
nowhere in the passage
at the end of the first paragraph
at the beginning of the first paragraph
at the end of the second paragraph
This evidence is introduced at the end of the second paragraph, where the author says, "The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south."
Example Question #41 : Natural Science Passages
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
What role does the underlined sentence play in the passage as a whole?
It offers an opinion as to the validity of the theory of the "recent writer" quoted in the first paragraph.
It provides a counterargument opposing the theory of the "recent writer" quoted in the first paragraph.
It provides evidence that supports the theory of the writer quoted in the first paragraph, but casts doubt on other theories.
It demonstrates that the "recent writer" quoted in the first paragraph is unreliable.
It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other.
It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other.
The sentence underlined is "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays." To answer this question correctly, you have to pay a great deal of attention to the way in which it is presented in the passage. It is quoted as evidence that the "recent writer" uses to support his or her theory that leaf size differs in this way due to a change in the intensity of the sunlight. So, neither"It provides a counterargument opposing the theory of the 'recent writer' quoted in the first paragraph" nor "It demonstrates that the 'recent writer' quoted in the first paragraph is unreliable" can be the correct answer. Since the statement in question is just presenting evidence, and not an opinion, "It offers an opinion as to the validity of the theory of the 'recent writer' quoted in the first paragraph" cannot be the correct answer either.
This leaves us with two possible answer choices: "It provides evidence that supports the theory of the writer quoted in the first paragraph, but casts doubt on other theories," and "It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other." The author of the passage, in the second paragraph, says that "the facts as above stated" are "in themselves correct, they do not by any means establish the theory founded on them." Given this, along with the fact that the underlined sentence's evidence never casts doubt on any theories in the passage, the correct answer is "It provides evidence that the phenomenon being discussed exists, but does not support one theory more than the other."
Example Question #14 : Drawing Inferences From Natural Science Passages
"The Multiple Sides of Computer Science" by Matthew Minerd (2014)
It often takes some time for a new discipline to become recognized as an independent science. An excellent example of this is computer science. In many ways, this science still is a hodgepodge of several different sciences, each one having its own distinct character. For example, some computer scientists are almost indistinguishable from mathematicians. Many of the most difficult topics in pattern recognition and data communications require intensive mathematics in order to provide software solutions. Years of training in the appropriate disciplines are necessary before the computer scientist can even begin to work as a programmer in such areas. In contrast to those computer scientists who work with complex mathematics, many computer scientists work on areas of hardware development that are similar to disciplines like electrical engineering and physics.
However, computer science has its own particular problems regarding the unity of its subject matter. There are many practical applications for computing work; therefore, many computer scientists focus on learning a large set of skills in programming languages, development environments, and even information technology. All of these disciplines have a certain practical coloration that is quite distinct from the theoretical concepts used in other parts of the field. Nevertheless, these practical topics add to the broad range of topics covered by most academic programs that claim to focus on “computer science.” It can only be hoped that these disciplines will increase in orderliness in the coming decades.
Which of the following topics would not be a good example to add to the second paragraph?
Studies in the types of physics involved in memory chip design
Studies of the social ramifications of programming
Topics related to building new computers from parts
Courses in manufacturing and connecting internet cables
Applications of computing to civic planning
Studies in the types of physics involved in memory chip design
The second paragraph focuses on the practical topics that often are taught in computer science programs. (These are contrasted to the more "theoretical" or "scientific" topics noted in the first paragraph.) The only really "scientific" topic listed here is the one about the physics involved in designing memory chips. Since this focuses on the physics, it is not so much about how to make these things as it is about the reasons why they work. This is more of a speculative matter than a practical or technical one.
Example Question #232 : Natural Science Passages
"Darwinism's Effect on Science" by Matthew Minerd (2014)
For much of the history of human thought, the sciences have studied subjects that seemed to be eternal and unchanging. Even the basic laws of the Nile’s flooding were investigated in the hopes of finding never-altering laws. Similarly, the scientific investigations of the ancient Near East and Greece into the regular laws of the stars ultimately looked for constant patterns. This overall pattern of scientific reasoning has left deep marks on the minds of almost all thinkers and found its apotheosis in modern physics. From the time of the early renaissance to the nineteenth century, physics represented the ultimate expression of scientific investigation for almost all thinkers. Its static laws appeared to be the unchanging principles of all motion and life on earth. By the nineteenth century, it had appeared that only a few details had to be “cleared up” before all science was basically known.
In many ways, this situation changed dramatically with the arrival of Darwinism. It would change even more dramatically in early twentieth-century physics as well. Darwin’s theories of evolution challenged many aspects of the “static” worldview. Even those who did not believe that a divine being created an unchanging world were shaken by the new vistas opened up to science by his studies. It had been a long-accepted inheritance of Western culture to believe that the species of living organisms were unchanging in nature. Though there might be many different kinds of creatures, the kinds themselves were not believed to change. The thesis of a universal morphing of types shattered this cosmology, replacing the old world-view with a totally new one. Among the things that had to change in light of Darwin’s work was the very view of science held by most people.
Which of the following provides an example of the main idea asserted in the first paragraph?
Religion constantly wanes with the rise of science.
The interest in science only arises once agriculture reaches a certain point of fixity.
The Pythagorean theorem is based upon the constant relationship of the sides of a right triangle to its hypotenuse.
The fluctuation of coloration within a species is rather minimal.
None of the other answers
The Pythagorean theorem is based upon the constant relationship of the sides of a right triangle to its hypotenuse.
The first paragraph discusses the role of necessary connections and unvarying rules in scientific thinking, particularly the type of thinking that has played a prominent role in Western thought for many centuries. The example of the Pythagorean theorem is a good example of this. Even if you do not know this mathematical equation, you can tell that this is the correct answer by the words "constant relationship."
Example Question #141 : Sat Critical Reading
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
What evidence does Mr. Gosse have to support the claim that hummingbirds eat insects?
He examined the contents of a hummingbird’s stomach and found many insects in it.
He observed one flailing around in the air and concluded that it was eating insects.
He read in a reputable scientific journal that they eat insects.
He surmised that they must eat insects because he has never seen one eating flower nectar.
A hummingbird got into his collection of live insects, and soon after, all of his insects were missing.
He observed one flailing around in the air and concluded that it was eating insects.
To answer this question, we have to consider the quotation attributed to Mr. Gosse found at the end of the passage:
“Mr. Gosse also remarks, ‘All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.’”
He doesn’t mention anything about having a collection of live insects, getting his information from a scientific journal, or dissecting a hummingbird’s stomach, so we can ignore those answer choices. He actively observes a hummingbird and surmises that they eat insects because of that, so the correct answer is “He observed one flailing around in the air and concluded that it was eating insects.”
Certified Tutor
Certified Tutor