ISEE Upper Level Quantitative : Triangles

Study concepts, example questions & explanations for ISEE Upper Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem

In Square \displaystyle SARE\displaystyle X is the midpoint of \displaystyle \overline{SE}\displaystyle Q is the midpoint of \displaystyle \overline{SA}, and \displaystyle U is the midpoint of \displaystyle \overline{QA}. Construct the line segments \displaystyle \overline{QX} and \displaystyle \overline{UR}.

Which is the greater quantity?

(a) \displaystyle QX

(b) \displaystyle UR

Possible Answers:

(a) and (b) are equal

(b) is the greater quantity

(a) is the greater quantity

It cannot be determined which of (a) and (b) is greater

Correct answer:

(b) is the greater quantity

Explanation:

The figure referenced is below:
Square x

For the sake of simplicity, assume that the square has sides of length 4. The following reasoning is independent of the actual lengths, and the reason for choosing 4 will become apparent in the explanation.

\displaystyle Q and \displaystyle X are midpoints of their respective sides, so \displaystyle QS = SX = 2, making \displaystyle \overline{QX} the hypotenuse of a triangle with legs of length 2 and 2. Therefore,

\displaystyle (QX ) ^{2}= (SQ)^{2}+ (SX)^{2} = 2^{2}+ 2^{2} = 4+ 4 = 8.

Also, \displaystyle QA = 2, and since \displaystyle U is the midpoint of \displaystyle \overline{AQ}\displaystyle AU = 1. \displaystyle AR = 4, making \displaystyle \overline{UR} the hypotenuse of a triangle with legs of length 1 and 4. Therefore, 

\displaystyle (UR)^{2} = (AU)^{2}+ (AR)^{2} = 1^{2}+ 4^{2} = 1+ 16 = 17

\displaystyle (UR)^{2} >(QX ) ^{2}, so \displaystyle UR > QX

Example Question #3 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem

Untitled

Figure NOT drawn to scale.

In the above figure, \displaystyle \angle ABC is a right angle. 

What is the length of \displaystyle \overline{AC} ? 

Possible Answers:

\displaystyle 33 \frac{4}{5 }

\displaystyle 31\frac{1}{5}

\displaystyle 38 \frac{4}{5 }

\displaystyle 36\frac{1}{5}

Correct answer:

\displaystyle 33 \frac{4}{5 }

Explanation:

The altitude of a right triangle from the vertex of its right angle divides the triangle into two smaller triangles each similar to the larger triangle. In particular, 

\displaystyle \bigtriangleup BXC \sim \bigtriangleup ABC.

Their corresponding sides are in proportion, so, setting the ratios of the hypotenuses to the short legs equal to each other,

\displaystyle \frac{AC}{BC} = \frac{BC}{CX}

\displaystyle \frac{AC}{13} = \frac{13}{5}

\displaystyle \frac{AC}{13} \cdot 13 = \frac{13}{5} \cdot 13

\displaystyle AC = \frac{169}{5} = 33 \frac{4}{5 }

Example Question #11 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem

Untitled

Figure NOT drawn to scale.

In the above figure, \displaystyle \angle ABC is a right angle. 

What is the length of \displaystyle \overline{AB} ?

Possible Answers:

\displaystyle 31\frac{1}{5}

\displaystyle 36\frac{1}{5}

\displaystyle 33 \frac{4}{5 }

\displaystyle 38 \frac{4}{5 }

Correct answer:

\displaystyle 31\frac{1}{5}

Explanation:

The altitude of a right triangle from the vertex of its right angle divides the triangle into two smaller triangles each similar to the larger triangle. In particular, 

\displaystyle \bigtriangleup BXC \sim \bigtriangleup ABC.

Their corresponding sides are in proportion, so, setting the ratios of the long legs to the short legs equal to each other,

\displaystyle \frac{AB}{BC} = \frac{BX}{XC}

By the Pythagorean Theorem. 

\displaystyle (BX)^{2} = (BC)^{2} - (CX)^{2}

\displaystyle (BX)^{2} = 13^{2} - 5^{2} = 169 - 25 = 144

\displaystyle BX = \sqrt{144} = 12

The proportion statement becomes

\displaystyle \frac{AB}{13} = \frac{12}{5}

\displaystyle \frac{AB}{13} \cdot 13 = \frac{12}{5} \cdot 13

\displaystyle AB = \frac{156}{5}= 31 \frac{1}{5}

Example Question #41 : Plane Geometry

Given: \displaystyle \bigtriangleup ABC with \displaystyle AB = 6\displaystyle BC= 8\displaystyle AC = 12.

Which is the greater quantity?

(a) \displaystyle m \angle B

(b) \displaystyle 90^{\circ }

Possible Answers:

(a) and (b) are equal

(b) is the greater quantity

It is impossible to determine which is greater from the information given

(a) is the greater quantity

Correct answer:

(a) is the greater quantity

Explanation:

The measure of the angle formed by the two shorter sides of a triangle can be determined to be acute, right, or obtuse by comparing the sum of the squares of those lengths to the square of the length of the opposite side. We compare:

\displaystyle (AB) ^{2} + (BC)^{2} = 6^{2} + 8 ^{2} = 36 + 64 = 100

\displaystyle (AC)^{2} = 12^{2} = 144

\displaystyle (AB) ^{2} + (BC)^{2} < (AC) ^{2}; it follows that \displaystyle \angle B is obtuse, and has measure greater than \displaystyle 90 ^{\circ }

Example Question #41 : Triangles

Untitled

Figure NOT drawn to scale.

In the above figure, \displaystyle \angle ABC is a right angle. 

What is the length of \displaystyle \overline{AC} ? 

Possible Answers:

\displaystyle 36\frac{1}{5}

\displaystyle 38 \frac{4}{5 }

\displaystyle 31\frac{1}{5}

\displaystyle 36\frac{1}{3}

\displaystyle 33 \frac{4}{5 }

Correct answer:

\displaystyle 33 \frac{4}{5 }

Explanation:

The altitude of a right triangle from the vertex of its right angle divides the triangle into two smaller triangles each similar to the larger triangle. In particular, 

\displaystyle \bigtriangleup BXC \sim \bigtriangleup ABC.

Their corresponding sides are in proportion, so, setting the ratios of the hypotenuses to the short legs equal to each other,

\displaystyle \frac{AC}{BC} = \frac{BC}{CX}

\displaystyle \frac{AC}{13} = \frac{13}{5}

\displaystyle \frac{AC}{13} \cdot 13 = \frac{13}{5} \cdot 13

\displaystyle AC = \frac{169}{5} = 33 \frac{4}{5 }

Example Question #1 : How To Find If Triangles Are Similar

\displaystyle \Delta ABC and \displaystyle \Delta DEF are right triangles, with right angles \displaystyle \angle B , \angle E, respectively. \displaystyle m \angle A = m\angle D = 45^{\circ } and \displaystyle AC > DF.

Which is the greater quantity?

(a) \displaystyle AB

(b) \displaystyle EF

Possible Answers:

(a) is greater.

(a) and (b) are equal.

It is impossible to tell from the information given.

(b) is greater.

Correct answer:

(a) is greater.

Explanation:

Each right triangle is a \displaystyle 45 ^{\circ }-45 ^{\circ }-90 ^{\circ } triangle, making each triangle isosceles by the Converse of the Isosceles Triangle Theorem.

Since \displaystyle \angle B and \displaystyle \angle E are the right triangles, the legs are \displaystyle \overline{AB}, \overline{BC}, \overline{DE}, \overline{EF}, and the hypotenuses are \displaystyle \overline{AC}, \overline{DF}.

By the \displaystyle 45 ^{\circ }-45 ^{\circ }-90 ^{\circ } Theorem, \displaystyle AB \sqrt{2} = AC and \displaystyle EF \sqrt{2} = DF.

\displaystyle AC > DF, so \displaystyle AB \sqrt{2} > EF \sqrt{2} and subsequently, \displaystyle AB > EF.

Example Question #2 : How To Find If Triangles Are Similar

Untitled

Figure NOT drawn to scale.

In the above figure, \displaystyle \angle ABC is a right angle. 

What is the ratio of the area of \displaystyle \bigtriangleup AXB to that of \displaystyle \bigtriangleup BXC ?

Possible Answers:

169 to 25

12 to 5

144 to 25

13 to 5

Correct answer:

144 to 25

Explanation:

The altitude of a right triangle from the vertex of its right angle divides the triangle into two smaller, similar triangles. 

The similarity ratio of \displaystyle \bigtriangleup AXB to \displaystyle \bigtriangleup BXC can be found by determining the ratio of one pair of corresponding sides; we will use the short leg of each, \displaystyle \overline{XB} and \displaystyle \overline{XC}.

\displaystyle \overline{XB} is also the long leg of \displaystyle \bigtriangleup BXC, so its length can be found using the Pythagorean Theorem:

\displaystyle (BX)^{2} = (BC)^{2} - (CX)^{2}

\displaystyle (BX)^{2} = 13^{2} - 5^{2} = 169 - 25 = 144

\displaystyle BX = \sqrt{144} = 12

The similarity ratio is therefore

\displaystyle \frac{XB}{XC} = \frac{12}{5}.

The ratio of the areas is the square of this ratio:

\displaystyle \left ( \frac{12}{5} \right )^{2} = \frac{12^{2}}{5^{2}} = \frac{144}{25} - that is, 144 to 25.

Example Question #1 : How To Find The Length Of The Side Of A Right Triangle

Right_triangle

Refer to the above right triangle. Which of the following is equal to \displaystyle x ?

Possible Answers:

\displaystyle 3 \sqrt{10}

\displaystyle 6

\displaystyle 6 \sqrt{ 5}

\displaystyle 5\sqrt{6}

\displaystyle 8

Correct answer:

\displaystyle 6 \sqrt{ 5}

Explanation:

By the Pythagorean Theorem,

\displaystyle x^{2 } + 12 ^{2 } = 18 ^{2 }

\displaystyle x^{2 } + 144 = 324

\displaystyle x^{2 } + 144 -144 = 324-144

\displaystyle x^{2 } = 180

\displaystyle x = \sqrt{180} = \sqrt{36} \cdot \sqrt{5} = 6 \sqrt{5}

Example Question #15 : Right Triangles

Given \displaystyle \Delta ABC with right angle \displaystyle \angle B\displaystyle m \angle C = 45 ^{\circ }

Which is the greater quantity?

(a) \displaystyle AB

(b) \displaystyle BC

Possible Answers:

(a) is greater.

It is impossible to tell from the information given.

(b) is greater.

(a) and (b) are equal.

Correct answer:

(a) and (b) are equal.

Explanation:

\displaystyle m \angle B = 90^{\circ}

\displaystyle m \angle C = 45 ^{\circ }

The sum of the measures of the angles of a triangle is , so:

\displaystyle m \angle A + m \angle B + m \angle C = 180

\displaystyle m \angle A +90 + 45 = 180

\displaystyle m \angle A +135= 180

\displaystyle m \angle A +135-135= 180-135

\displaystyle m \angle A = 45^{\circ }

This is a \displaystyle 45^{\circ }-45^{\circ }-90^{\circ } triangle, so its legs \displaystyle \overline{AB} and \displaystyle \overline{BC} are congruent. The quantities are equal.

Example Question #1 : How To Find The Length Of The Side Of A Right Triangle

Triangle

Give the length of one leg of an isosceles right triangle whose area is the same as the right triangle in the above diagram. 

Possible Answers:

\displaystyle 3\sqrt{15} \textrm{ in}

\displaystyle 6 \sqrt{15} \textrm{ in}

\displaystyle 12 \sqrt{ 5} \textrm{ in}

\displaystyle 9 \sqrt{10} \textrm{ in}

\displaystyle 15 \sqrt{6} \textrm{ in}

Correct answer:

\displaystyle 6 \sqrt{15} \textrm{ in}

Explanation:

The area of a triangle is half the product of its height and its base; in a right triangle, the legs, being perpendicular, can serve as these quantites.

The triangle in the diagram has area 

\displaystyle \frac{1}{2} \times 30 \times 18 = 270 square inches.

 

An isosceles right triangle has two legs of the same length, which we will call \displaystyle L. The area of that triangle, which is the same as that of the one in the diagram, is therefore 

\displaystyle \frac{1}{2} L ^{2} = 270

\displaystyle \frac{1}{2} L ^{2}\cdot 2 = 270 \cdot 2

\displaystyle L ^{2} = 540

\displaystyle L = \sqrt{540}

\displaystyle L = \sqrt{36}\cdot \sqrt{15} = 6 \sqrt{15} inches.

 

Learning Tools by Varsity Tutors