All ISEE Upper Level Math Resources
Example Questions
Example Question #41 : Data Analysis
What is the median of the following set?
The first step towards solving for the set, is to reorder the numbers from smallest to largest.
This gives us:
The median is equal to middle number in s a set. In since this set has 6 numbers, which is even, the average of the middle two numbers is the mean. The average can be found using the equation below:
Example Question #593 : Isee Upper Level (Grades 9 12) Mathematics Achievement
Find the median of the following data set:
Find the median of the following data set:
Begin by putting your numbers in increasing order:
Next, identify the median by choosing the middle value:
So, our answer is 55
Example Question #42 : Data Analysis
Find the median of the following data set:
Find the median of the following data set:
Let's begin by rearranging our terms from least to greatest:
Now, the median will be the middle term:
Example Question #43 : Data Analysis
Find the median of the following data set:
Find the median of the following data set:
First, let's put our terms in increasing order:
Now, we can find our median simply by choosing the middle term.
So, 56 is our median.
Example Question #44 : Data Analysis
Find the median of the following data set:
Find the median of the following data set:
First, let's put our terms in ascending order.
Now, our median will simply be the term which is in the middle.
So, our median is 67
Example Question #45 : Data Analysis
Use the following data set to answer the question:
Find the median.
To find the median of a data set, we will first arrange the numbers in ascending order. Then, we will locate the number in the center of the data set.
So, given the data set
we will arrange the numbers in ascending order. To do that, we will arrange them from smallest to largest. So, we get
Now, we will locate the number in the center of the data set.
We can see that it is 6.
Therefore, the median of the data set is 6.
Example Question #46 : Data Analysis
In a class of students, a poll was taken to see how many siblings students had. The results in the poll were then made into a table.
Number of Siblings | Number of Students with the Specific Number of Siblings |
0 | 5 |
1 | 9 |
2 | 4 |
3 | 2 |
What is the median number of siblings the class has?
Recall that the median is the middle number of a data set, when the data has been put in ascending order.
Start by writing out all the individual data points in ascending order:
Since we have an even number of students in the class, the median number will be between the middle two data points. In this case, the middle two points are both , so the median must also be .
Example Question #47 : Data Analysis
A class completes a Math test. These are there scores:
Find the median grade.
To find the median of a data set, we will first arrange the numbers in ascending order. Then, we will find the number in the middle of the data set.
So, given the Math test scores
we will first arrange them in ascending order. To do that, we will arrange them from smallest to largest So, we get
Now, we will find the number in the middle of the set.
Therefore, the median of the set of Math test scores is 85.
Example Question #48 : Data Analysis
Find the median of the following data set:
Find the median of the following data set:
To find the median, first put the numbers in increasing order
Now, identify the median by choosing the middle term
In this case, it is 44, because 44 is in the middle of all our terms.
Example Question #49 : Data Analysis
For his last six math tests, Josh scored 92, 80, 88, 94, 97, and 95. What is his median test score?
The median is the number that is in the middle of an ordered list. Start by putting the numbers in ascending order:
Since we have an even number of test scores, the median will be the number that is in between the middle two numbers.
In this case, the median will have to be between 92 and 94.
The number that is exactly between these two numbers is .
Certified Tutor
Certified Tutor