ISEE Middle Level Quantitative : ISEE Middle Level (grades 7-8) Quantitative Reasoning

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Algebraic Concepts

Which of the following is equivalent to \(\displaystyle 6t \cdot 7t\) ?

Possible Answers:

\(\displaystyle 42t^{2}\)

\(\displaystyle 13t^{2}\)

\(\displaystyle 42t\)

\(\displaystyle 13t\)

\(\displaystyle t ^{42}\)

Correct answer:

\(\displaystyle 42t^{2}\)

Explanation:

Use the commutative and associative properties to reorder the expression and group like-terms together.

\(\displaystyle 6t \cdot 7t = 6\cdot 7\cdot t \cdot t = 42 \cdot t^{2}=42t^2\)

Example Question #42 : Operations

Define an operation on the real numbers as follows:

For all real values of \(\displaystyle a\) and \(\displaystyle b\),

\(\displaystyle a \bigstar b = ab-a\)

\(\displaystyle N\) is a positive number. Which is the greater quantity?

(a) \(\displaystyle N \bigstar (-N)\)

(b) \(\displaystyle (-N) \bigstar N\)

Possible Answers:

(a) is the greater quantity

(b) is the greater quantity

(a) and (b) are equal

It is impossible to determine which is greater from the information given

Correct answer:

(b) is the greater quantity

Explanation:

\(\displaystyle a \bigstar b = ab-a\), so

\(\displaystyle N \bigstar (-N) = N (-N ) - N= -N^{2} - N\)

\(\displaystyle (-N) \bigstar N = (-N )N - (-N)= -N^{2}+N\)

Since \(\displaystyle N\) is positive, 

\(\displaystyle N > -N\)

and by the addition property of inequality,

\(\displaystyle -N^{2}+N > -N^{2} - N\)

and 

\(\displaystyle (-N) \bigstar N > N \bigstar (-N)\)

Example Question #41 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

Which of the following is equivalent to \(\displaystyle 20y?\) 

Possible Answers:

\(\displaystyle 5(3y + y)\)

All four of the expressions given in the other responses are correct.

\(\displaystyle 5 (4y)\)

\(\displaystyle 4 (5y)\)

\(\displaystyle 4 (3y + 2y)\)

Correct answer:

All four of the expressions given in the other responses are correct.

Explanation:

We demonstrate that all four of the expressions are equivalent to \(\displaystyle 20y\).

By the associative property of multiplication,

\(\displaystyle 4 (5y) = (4 \cdot 5) \cdot y = 20y\)

and

\(\displaystyle 5 (4y) = (5\cdot 4) \cdot y = 20y\)

By combining like terms, and applying the distribution property:

\(\displaystyle 5(3y + y) = 5(3y + 1 y) = 5[ (3 + 1 ) y] = 5 \left ( 4 y \right )= 20y\)

\(\displaystyle 4 (3y + 2y) = 4\left [ (3 + 2) y \right ] = 4\left ( 5y\right ) = 20y\)

Example Question #92 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}10\\ \times\ 1\end{array}}{ \ \ \ \space}\)

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 30\)

\(\displaystyle 1\)

\(\displaystyle 10\)

\(\displaystyle 11\)

Correct answer:

\(\displaystyle 10\)

Explanation:

To solve this problem, we multiply \(\displaystyle 1\) by the ones position and the tens position. 

\(\displaystyle 1\times0=0\)

\(\displaystyle 1\times1=1\)

\(\displaystyle \frac{\begin{array}[b]{r}10\\ \times\ 1\end{array}}{ \ \ \space10}\)

Example Question #42 : Algebraic Concepts

\(\displaystyle \frac{\begin{array}[b]{r}20\\ \times\ 2\end{array}}{ \ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 22\)

\(\displaystyle 20\)

\(\displaystyle 50\)

\(\displaystyle 42\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 40\)

Explanation:

To solve this problem, we multiply \(\displaystyle 2\) by the ones position and the tens position. 

\(\displaystyle 2\times0=0\)

\(\displaystyle 2\times2=4\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ \times\ 2\end{array}}{ \ \ \space40}\)

Example Question #2 : Multiply One Digit Numbers By Multiples Of 10: Ccss.Math.Content.3.Nbt.A.3

\(\displaystyle \frac{\begin{array}[b]{r}40\\ \times\ 4\end{array}}{ \ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 180\)

\(\displaystyle 120\)

\(\displaystyle 80\)

\(\displaystyle 160\)

\(\displaystyle 60\)

Correct answer:

\(\displaystyle 160\)

Explanation:

To solve this problem, we multiply \(\displaystyle 4\) by the ones position and the tens position. 

\(\displaystyle 4\times0=0\)

\(\displaystyle 4\times4=16\)

\(\displaystyle \frac{\begin{array}[b]{r}40\\ \times\ 4\end{array}}{ \ \space160}\)

Example Question #43 : Algebraic Concepts

\(\displaystyle \frac{\begin{array}[b]{r}50\\ \times\ 5\end{array}}{ \ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 250\)

\(\displaystyle 110\)

\(\displaystyle 25\)

\(\displaystyle 45\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 250\)

Explanation:

To solve this problem, we multiply \(\displaystyle 5\) by the ones position and the tens position. 

\(\displaystyle 5\times0=0\)

\(\displaystyle 5\times5=25\)

\(\displaystyle \frac{\begin{array}[b]{r}50\\ \times\ 5\end{array}}{ \ \space250}\)

Example Question #1 : Multiply One Digit Numbers By Multiples Of 10: Ccss.Math.Content.3.Nbt.A.3

\(\displaystyle \frac{\begin{array}[b]{r}60\\ \times\ 6\end{array}}{ \ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 180\)

\(\displaystyle 540\)

\(\displaystyle 120\)

\(\displaystyle 240\)

\(\displaystyle 360\)

Correct answer:

\(\displaystyle 360\)

Explanation:

To solve this problem, we multiply \(\displaystyle 6\) by the ones position and the tens position. 

\(\displaystyle 6\times0=0\)

\(\displaystyle 6\times6=36\)

\(\displaystyle \frac{\begin{array}[b]{r}60\\ \times\ 6\end{array}}{ \ \space360}\)

Example Question #1 : Multiply One Digit Numbers By Multiples Of 10: Ccss.Math.Content.3.Nbt.A.3

Solve the following: 

\(\displaystyle \frac{\begin{array}[b]{r}70\\ \times\ 7\end{array}}{ \ \ \ \space}\) 

Possible Answers:

\(\displaystyle 520\)

\(\displaystyle 140\)

\(\displaystyle 420\)

\(\displaystyle 500\)

\(\displaystyle 490\)

Correct answer:

\(\displaystyle 490\)

Explanation:

To solve this problem, we multiply \(\displaystyle 7\) by the ones position and the tens position. 

\(\displaystyle 7\times0=0\)

\(\displaystyle 7\times7=49\)

\(\displaystyle \frac{\begin{array}[b]{r}70\\ \times\ 7\end{array}}{ \ \space490}\)

Example Question #11 : How To Multiply Variables

\(\displaystyle \frac{\begin{array}[b]{r}80\\ \times\ 8\end{array}}{ \ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 160\)

\(\displaystyle 680\)

\(\displaystyle 480\)

\(\displaystyle 440\)

\(\displaystyle 640\)

Correct answer:

\(\displaystyle 640\)

Explanation:

To solve this problem, we multiply \(\displaystyle 8\) by the ones position and the tens position. 

\(\displaystyle 8\times0=0\)

\(\displaystyle 8\times8=64\)

\(\displaystyle \frac{\begin{array}[b]{r}80\\ \times\ 8\end{array}}{ \ \space640}\)

Learning Tools by Varsity Tutors