ISEE Middle Level Math : How to find the solution to an equation

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #541 : Algebraic Concepts

Solve the following equations when \displaystyle y=5.

\displaystyle y=2x-3

Possible Answers:

\displaystyle 5

\displaystyle 2

\displaystyle 3

\displaystyle -3

\displaystyle 4

Correct answer:

\displaystyle 4

Explanation:

The first step to solve this equation is to plug in your know variable \displaystyle y with the value given, \displaystyle 5.  

Now you have an expression that reads \displaystyle 5=2x-3 and we now solve for \displaystyle x.  

First you must move the constant \displaystyle -3 by adding \displaystyle 3 to both sides resulting in, 

\displaystyle 8=2x.  

The last step is to divide both sides by \displaystyle 2 resulting in,

\displaystyle x=4.

Example Question #542 : Algebraic Concepts

Solve for \displaystyle y when \displaystyle x=6

\displaystyle y=\frac{x}{2}+7

Possible Answers:

\displaystyle 6

\displaystyle 10

\displaystyle 2

\displaystyle 13

\displaystyle 7

Correct answer:

\displaystyle 10

Explanation:

The first is to plug in the \displaystyle x value given in the problem leaving us with,

 \displaystyle y=\frac{6}{2}+7.  

The next step is to complete the division which is 

\displaystyle 6\div2=3.  

Then you add the constant and that gives you an answer of,

 \displaystyle 3+7=10.

Example Question #543 : Algebraic Concepts

Solve for \displaystyle x:

\displaystyle 9x + 2.3 =-10.3

Possible Answers:

\displaystyle x = -1.4

\displaystyle x = 1.4

\displaystyle x = 12.6

\displaystyle x = -12.6

Correct answer:

\displaystyle x = -1.4

Explanation:

This is a two-step equation.  The first step is to isolate the variable.  Subtract 2.3 from both sides of the equation:

\displaystyle 9x +2.3 -2.3 = -10.3 - 2.3

\displaystyle 9x = -12.6

Divide both sides of the equation by the coefficient which is 9:

\displaystyle x = -1.4

Example Question #544 : Algebraic Concepts

\displaystyle \frac{1}{2}x + 3 = 5

Possible Answers:

\displaystyle x = 0

\displaystyle x = 5

\displaystyle x = 4

\displaystyle x = 8

Correct answer:

\displaystyle x = 4

Explanation:

To isolate the variable, subtract 3 from both sides of the equation:

\displaystyle \frac{1}{2}x + 3-3 = 5-3

\displaystyle \frac{1}{2}x = 2

Multiply both sides of the equation by the reciprocal of \displaystyle \frac{1}{2} which is \displaystyle \frac{2}{1}

 

\displaystyle \frac{1}{2}\times(\frac2{}{1}) = 2 \times \frac{2}{1}

\displaystyle x = \frac{4}{1}

\displaystyle x = 4

Example Question #341 : How To Find The Solution To An Equation

Find the solution to the following equation when \displaystyle t=6.

\displaystyle y=2t^2-6t-36

Possible Answers:

\displaystyle 36

\displaystyle 72

\displaystyle 0

\displaystyle 12

Correct answer:

\displaystyle 0

Explanation:

Find the solution to the following equation when \displaystyle t=6.

\displaystyle y=2t^2-6t-36

To solve this equation, we should plug in 6 wherever there is a t, and simplify.

\displaystyle y=2(6)^2-6(6)-36=72-36-36=0

So, our answer when t=6 is 0.

Example Question #552 : Algebraic Concepts

Find b when \displaystyle f=6, and \displaystyle c=4

\displaystyle b=3f^3-4c^4.

Possible Answers:

\displaystyle b=16

\displaystyle b=487

\displaystyle b=-376

\displaystyle b=376

Correct answer:

\displaystyle b=-376

Explanation:

Find b when \displaystyle f=6, and \displaystyle c=4

\displaystyle b=3f^3-4c^4

To find b, we want to plug in f and c and simplify:

\displaystyle b=3(6)^3-4(4)^4=3(216)-1024

\displaystyle 3(216)-1024=648-1024=-376

So our answer is

\displaystyle b=-376

Example Question #341 : How To Find The Solution To An Equation

Solve: \displaystyle 11^{2}-4^{3}

Possible Answers:

\displaystyle 57

\displaystyle 121

\displaystyle 185

\displaystyle 64

Correct answer:

\displaystyle 57

Explanation:

To solve, first solve the exponents:

\displaystyle 11^{2}=121

\displaystyle 4^{3}=64

Then solve the equation:\displaystyle 121-64=57

Answer: \displaystyle 57

Example Question #342 : How To Find The Solution To An Equation

Solve: \displaystyle 5^{3}*2^{3}

Possible Answers:

\displaystyle 100

\displaystyle 117

\displaystyle 1000

\displaystyle 131

Correct answer:

\displaystyle 1000

Explanation:

To solve, first solve the exponents:

\displaystyle 5^{3}=125

\displaystyle 2^{3}=8

Then solve the equation: \displaystyle 125*8=1000

Answer: \displaystyle 1000

Example Question #2671 : Isee Middle Level (Grades 7 8) Mathematics Achievement

Solve for \displaystyle t:

\displaystyle 13t=169

Possible Answers:

\displaystyle 14

\displaystyle 182

\displaystyle 156

\displaystyle 13

Correct answer:

\displaystyle 13

Explanation:

To solve, divide each side by 13:

\displaystyle 13t\div 13=169\div 13

\displaystyle t=13

Answer: \displaystyle 13

Example Question #2672 : Isee Middle Level (Grades 7 8) Mathematics Achievement

Solve for \displaystyle m:

\displaystyle 44m=308

Possible Answers:

\displaystyle 6

\displaystyle 8

\displaystyle 7

\displaystyle 9

Correct answer:

\displaystyle 7

Explanation:

To solve, divide each side by \displaystyle 44:

\displaystyle 44m\div 44=308\div 44

\displaystyle m=7

Answer: \displaystyle 7

Learning Tools by Varsity Tutors