ISEE Lower Level Quantitative : Numbers and Operations

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Operations & Algebraic Thinking

\displaystyle \frac{\begin{array}[b]{r}12\\ \times 3\end{array}}{ \ \ \ \space}

 

Possible Answers:

\displaystyle 48

\displaystyle 60

\displaystyle 36

\displaystyle 12

\displaystyle 24

Correct answer:

\displaystyle 36

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 12\times3 means adding \displaystyle 3 twelve times. 

\displaystyle 3+3+3+3+3+3+3+3+3+3+3+3=36 and \displaystyle 12\times3=36

Or we can think of this as grouping objects. We have \displaystyle 12 groups, with \displaystyle 3 objects in each group. We can count up the total number of objects, in this case triangles. Screen shot 2015 08 18 at 8.00.16 am

Example Question #1 : Operations & Algebraic Thinking

\displaystyle \frac{\begin{array}[b]{r}1\\ \times 9\end{array}}{ \ \ \ \space}

 

 

Possible Answers:

\displaystyle 36

\displaystyle 27

\displaystyle 18

\displaystyle 1

\displaystyle 9

Correct answer:

\displaystyle 9

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 1\times9 means adding \displaystyle 9 one time. 

\displaystyle 9=9 and \displaystyle 1\times9=9

Or we can think of this as grouping objects. We have \displaystyle 1 group, with \displaystyle 9 objects in each group. We can count up the total number of objects, in this case triangles. 

Screen shot 2015 08 18 at 8.03.43 am

Example Question #11 : Common Core Math: Grade 3

\displaystyle \frac{\begin{array}[b]{r}6\\ \times 4\end{array}}{ \ \ \ \space}

 

Possible Answers:

\displaystyle 12

\displaystyle 16

\displaystyle 24

\displaystyle 8

\displaystyle 18

Correct answer:

\displaystyle 24

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 6\times4 means adding \displaystyle 4 six times. 

\displaystyle 4+4+4+4+4+4=24 and \displaystyle 6\times4=24

Or we can think of this as grouping objects. We have \displaystyle 6 groups, with \displaystyle 4 objects in each group. We can count up the total number of objects, in this case triangles. 

Screen shot 2015 08 17 at 9.13.46 pm

Example Question #113 : How To Multiply

\displaystyle \frac{\begin{array}[b]{r}1\\ \times 4\end{array}}{ \ \ \ \space}

 

Possible Answers:

\displaystyle 12

\displaystyle 4

\displaystyle 16

\displaystyle 1

\displaystyle 8

Correct answer:

\displaystyle 4

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 1\times4 means adding \displaystyle 4 one time. 

\displaystyle 4=4 and \displaystyle 1\times4=4

Or we can think of this as grouping objects. We have \displaystyle 1 group, with \displaystyle 4 objects in each group. We can count up the total number of objects, in this case triangles. 

Screen shot 2015 08 18 at 8.09.43 am

Example Question #11 : Representing And Solving Problems Involving Multiplication And Division

Solve the following: 

\displaystyle \frac{\begin{array}[b]{r}3\\ \times1 2\end{array}}{ \ \ \ \space}

Possible Answers:

\displaystyle 36

\displaystyle 60

\displaystyle 12

\displaystyle 24

\displaystyle 48

Correct answer:

\displaystyle 36

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 3\times12 means adding \displaystyle 12 three times. 

\displaystyle 12+12+12=36 and \displaystyle 3\times12=36

Or we can think of this as grouping objects. We have \displaystyle 3 groups, with \displaystyle 12 objects in each group. We can count up the total number of objects, in this case triangles. 

Screen shot 2015 08 18 at 8.21.29 am

Example Question #115 : How To Multiply

\displaystyle \frac{\begin{array}[b]{r}4\\ \times 5\end{array}}{ \ \ \ \space}

 

Possible Answers:

\displaystyle 24

\displaystyle 16

\displaystyle 32

\displaystyle 20

\displaystyle 28

Correct answer:

\displaystyle 20

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 4\times5 means adding \displaystyle 5 four times. 

\displaystyle 5+5+5+5=20 and \displaystyle 4\times5=20

Or we can think of this as grouping objects. We have \displaystyle 4 groups, with \displaystyle 5 objects in each group. We can count up the total number of objects, in this case triangles. 

Screen shot 2015 08 18 at 8.26.03 am

Example Question #116 : How To Multiply

\displaystyle \frac{\begin{array}[b]{r}5\\ \times 7\end{array}}{ \ \ \ \space}

 

Possible Answers:

\displaystyle 35

\displaystyle 20

\displaystyle 15

\displaystyle 25

\displaystyle 30

Correct answer:

\displaystyle 35

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 5\times7 means adding \displaystyle 7 five times. 

\displaystyle 7+7+7+7+7=35 and \displaystyle 5\times7=35

Or we can think of this as grouping objects. We have \displaystyle 5 groups, with \displaystyle 7 objects in each group. We can count up the total number of objects, in this case triangles. 

Screen shot 2015 08 18 at 8.32.41 am

Example Question #11 : Common Core Math: Grade 3

\displaystyle \frac{\begin{array}[b]{r}7\\ \times 3\end{array}}{ \ \ \ \space}

 

Possible Answers:

\displaystyle 28

\displaystyle 21

\displaystyle 14

\displaystyle 14

\displaystyle 35

Correct answer:

\displaystyle 21

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 7\times3 means adding \displaystyle 3 seven times. 

\displaystyle 3+3+3+3+3+3+3=21 and \displaystyle 7\times3=21

Or we can think of this as grouping objects. We have \displaystyle 7 groups, with \displaystyle 3 objects in each group. We can count up the total number of objects, in this case triangles. 

Screen shot 2015 08 18 at 8.39.21 am

Example Question #12 : Representing And Solving Problems Involving Multiplication And Division

\displaystyle \frac{\begin{array}[b]{r}9\\ \times 3\end{array}}{ \ \ \ \space}

 

Possible Answers:

\displaystyle 63

\displaystyle 45

\displaystyle 36

\displaystyle 27

\displaystyle 72

Correct answer:

\displaystyle 27

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 9\times3 means adding \displaystyle 3 nine times. 

\displaystyle 3+3+3+3+3+3+3+3+3=27 and \displaystyle 9\times3=27

Or we can think of this as grouping objects. We have \displaystyle 9 groups, with \displaystyle 3 objects in each group. We can count up the total number of objects, in this case triangles.

Screen shot 2015 08 18 at 8.50.36 am

Example Question #11 : Representing And Solving Problems Involving Multiplication And Division

\displaystyle \frac{\begin{array}[b]{r}11\\ \times 11\end{array}}{ \ \ \ \space}

 

Possible Answers:

\displaystyle 88

\displaystyle 77

\displaystyle 99

\displaystyle 111

\displaystyle 121

Correct answer:

\displaystyle 121

Explanation:

Multiplication can be thought of as repeated addition, or as objects in a group. 

\displaystyle 11\times11 means adding \displaystyle 11 eleven times. 

\displaystyle 11+11+11+11+11+11+11+11+11+11+11+=121 and \displaystyle 11\times11=121

Or we can think of this as grouping objects. We have \displaystyle 11 groups, with \displaystyle 11 objects in each group. We can count up the total number of objects, in this case triangles. 

Screen shot 2015 08 18 at 9.00.11 am

Learning Tools by Varsity Tutors