ISEE Lower Level Quantitative : ISEE Lower Level (grades 5-6) Quantitative Reasoning

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1462 : Ssat Upper Level Quantitative (Math)

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{2} __________\displaystyle \frac{3}{4}

Possible Answers:

\displaystyle =

\displaystyle <

\displaystyle >

Correct answer:

\displaystyle <

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{2}{2}=\frac{2}{4}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{2}{4}< \frac{3}{4}

Example Question #3 : How To Compare Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{6}{12} __________\displaystyle \frac{5}{10}

 

Possible Answers:

\displaystyle <

\displaystyle =

\displaystyle >

Correct answer:

\displaystyle =

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{6}{12}\times\frac{10}{10}=\frac{60}{120}

\displaystyle \frac{5}{10}\times\frac{12}{12}=\frac{60}{120}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{60}{120}=\frac{60}{120}

Example Question #31 : Number & Operations: €”Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{2} __________\displaystyle \frac{1}{6}

Possible Answers:

\displaystyle <

\displaystyle =

\displaystyle >

Correct answer:

\displaystyle >

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{3}{3}=\frac{3}{6}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{3}{6}>\frac{1}{6}

Example Question #32 : Number & Operations: €”Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{3}{9} __________\displaystyle \frac{2}{3}

Possible Answers:

\displaystyle <

\displaystyle >

\displaystyle =

Correct answer:

\displaystyle <

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{2}{3}\times\frac{3}{3}=\frac{6}{9}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{3}{9}< \frac{6}{9}

Example Question #12 : Compare Two Fractions With Different Numerators And Different Denominators: Ccss.Math.Content.4.Nf.A.2

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{3}{6} __________\displaystyle \frac{5}{10}

Possible Answers:

\displaystyle >

\displaystyle <

\displaystyle =

Correct answer:

\displaystyle =

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{3}{6}\times\frac{10}{10}=\frac{30}{60}

\displaystyle \frac{5}{10}\times\frac{6}{6}=\frac{30}{60}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{30}{60}=\frac{30}{60}

Example Question #13 : Compare Two Fractions With Different Numerators And Different Denominators: Ccss.Math.Content.4.Nf.A.2

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{5}{12} __________ \displaystyle \frac{1}{3}

Possible Answers:

\displaystyle >

\displaystyle <

\displaystyle =

Correct answer:

\displaystyle >

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{3}\times\frac{4}{4}=\frac{4}{12}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{5}{12}>\frac{4}{12}

Example Question #14 : Compare Two Fractions With Different Numerators And Different Denominators: Ccss.Math.Content.4.Nf.A.2

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{2} __________\displaystyle \frac{8}{16}

Possible Answers:

\displaystyle =

\displaystyle <

\displaystyle >

Correct answer:

\displaystyle =

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{8}{8}=\frac{8}{16}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{8}{16}=\frac{8}{16}

Example Question #15 : Compare Two Fractions With Different Numerators And Different Denominators: Ccss.Math.Content.4.Nf.A.2

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{6}{13} __________\displaystyle \frac{3}{26}

Possible Answers:

\displaystyle =

\displaystyle >

\displaystyle <

Correct answer:

\displaystyle >

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{6}{13}\times\frac{2}{2}=\frac{12}{26}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{12}{26}>\frac{3}{26}

Example Question #2741 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{4} __________\displaystyle \frac{3}{5}

Possible Answers:

\displaystyle >

\displaystyle <

\displaystyle =

Correct answer:

\displaystyle <

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{4}\times\frac{5}{5}=\frac{5}{20}

\displaystyle \frac{3}{5}\times\frac{4}{4}=\frac{12}{20}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{5}{20}< \frac{12}{20}

Example Question #2742 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{3}{6} __________\displaystyle \frac{7}{14}

Possible Answers:

\displaystyle =

\displaystyle >

\displaystyle <

Correct answer:

\displaystyle =

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{3}{6}\times\frac{14}{14}=\frac{42}{84}

\displaystyle \frac{7}{14}\times\frac{6}{6}=\frac{42}{84}

 

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{42}{84}=\frac{42}{84}

Learning Tools by Varsity Tutors