ISEE Lower Level Quantitative : ISEE Lower Level (grades 5-6) Quantitative Reasoning

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #516 : Geometry

What is the length of a room with a perimeter of \(\displaystyle 40ft\) and a width of \(\displaystyle 8ft?\)

 

Possible Answers:

\(\displaystyle 14ft\)

\(\displaystyle 10ft\)

\(\displaystyle 13ft\)

\(\displaystyle 11ft\)

\(\displaystyle 12ft\)

Correct answer:

\(\displaystyle 12ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 40=2l+2(8)\)

\(\displaystyle 40=2l+16\)

Subtract \(\displaystyle 16\) from both sides

\(\displaystyle 40-16=2l+16-16\)

\(\displaystyle 24=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{24}{2}=\frac{2l}{2}\)

\(\displaystyle 12=l\)

Example Question #517 : Geometry

What is the length of a room with a perimeter of \(\displaystyle 98ft\) and a width of \(\displaystyle 28ft?\)

 

Possible Answers:

\(\displaystyle 22ft\)

\(\displaystyle 20ft\)

\(\displaystyle 24ft\)

\(\displaystyle 23ft\)

\(\displaystyle 21ft\)

Correct answer:

\(\displaystyle 21ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 98=2l+2(28)\)

\(\displaystyle 98=2l+56\)

Subtract \(\displaystyle 56\) from both sides

\(\displaystyle 98-56=2l+56-56\)

\(\displaystyle 42=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{42}{2}=\frac{2l}{2}\)

\(\displaystyle 21=l\)

Example Question #81 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a room with a perimeter of \(\displaystyle 70ft\) and a width of \(\displaystyle 14ft?\)

 

Possible Answers:

\(\displaystyle 21ft\)

\(\displaystyle 22ft\)

\(\displaystyle 24ft\)

\(\displaystyle 25ft\)

\(\displaystyle 23ft\)

Correct answer:

\(\displaystyle 21ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 70=2l+2(14)\)

\(\displaystyle 70=2l+28\)

Subtract \(\displaystyle 28\) from both sides

\(\displaystyle 70-28=2l+28-28\)

\(\displaystyle 42=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{42}{2}=\frac{2l}{2}\)

\(\displaystyle 21=l\)

Example Question #82 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a room with a perimeter of \(\displaystyle 42ft\) and a width of \(\displaystyle 10ft?\)

 

Possible Answers:

\(\displaystyle 11ft\)

\(\displaystyle 8ft\)

\(\displaystyle 9ft\)

\(\displaystyle 10ft\)

\(\displaystyle 12ft\)

Correct answer:

\(\displaystyle 11ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 42=2l+2(10)\)

\(\displaystyle 42=2l+20\)

Subtract \(\displaystyle 20\) from both sides

\(\displaystyle 42-20=2l+20-20\)

\(\displaystyle 22=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{22}{2}=\frac{2l}{2}\)

\(\displaystyle 11=l\)

Example Question #202 : Measurement & Data

What is the length of a room with a perimeter of \(\displaystyle 52ft\) and a width of \(\displaystyle 13ft?\)

 

Possible Answers:

\(\displaystyle 14ft\)

\(\displaystyle 13ft\)

\(\displaystyle 12ft\)

\(\displaystyle 15ft\)

\(\displaystyle 16ft\)

Correct answer:

\(\displaystyle 13ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 52=2l+2(13)\)

\(\displaystyle 52=2l+26\)

Subtract \(\displaystyle 26\) from both sides

\(\displaystyle 52-26=2l+26-26\)

\(\displaystyle 26=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{26}{2}=\frac{2l}{2}\)

\(\displaystyle 13=l\)

Example Question #1391 : Common Core Math: Grade 4

What is the length of a room with a perimeter of \(\displaystyle 38ft\) and a width of \(\displaystyle 6ft?\)

 

Possible Answers:

\(\displaystyle 17ft\)

\(\displaystyle 16ft\)

\(\displaystyle 15ft\)

\(\displaystyle 14ft\)

\(\displaystyle 13ft\)

Correct answer:

\(\displaystyle 13ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 38=2l+2(6)\)

\(\displaystyle 38=2l+12\)

Subtract \(\displaystyle 12\) from both sides

\(\displaystyle 38-12=2l+12-12\)

\(\displaystyle 26=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{26}{2}=\frac{2l}{2}\)

\(\displaystyle 13=l\)

Example Question #522 : Plane Geometry

What is the length of a room with a perimeter of \(\displaystyle 36ft\) and a width of \(\displaystyle 10ft?\)

 

Possible Answers:

\(\displaystyle 10ft\)

\(\displaystyle 7ft\)

\(\displaystyle 9ft\)

\(\displaystyle 11ft\)

\(\displaystyle 8ft\)

Correct answer:

\(\displaystyle 8ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 36=2l+2(10)\)

\(\displaystyle 36=2l+20\)

Subtract \(\displaystyle 20\) from both sides

\(\displaystyle 36-20=2l+20-20\)

\(\displaystyle 16=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{16}{2}=\frac{2l}{2}\)

\(\displaystyle 8=l\)

Example Question #5681 : Ssat Elementary Level Quantitative (Math)

What is the length of a room with a perimeter of \(\displaystyle 52ft\) and a width of \(\displaystyle 11ft?\)

 

Possible Answers:

\(\displaystyle 13ft\)

\(\displaystyle 15ft\)

\(\displaystyle 16ft\)

\(\displaystyle 17ft\)

\(\displaystyle 14ft\)

Correct answer:

\(\displaystyle 15ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 52=2l+2(11)\)

\(\displaystyle 52=2l+22\)

Subtract \(\displaystyle 22\) from both sides

\(\displaystyle 52-22=2l+22-22\)

\(\displaystyle 30=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{30}{2}=\frac{2l}{2}\)

\(\displaystyle 15=l\)

Example Question #1392 : Common Core Math: Grade 4

What is the length of a room with a perimeter of \(\displaystyle 58ft\) and a width of \(\displaystyle 19ft?\)

 

Possible Answers:

\(\displaystyle 9ft\)

\(\displaystyle 7ft\)

\(\displaystyle 8ft\)

\(\displaystyle 10ft\)

\(\displaystyle 11ft\)

Correct answer:

\(\displaystyle 10ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 58=2l+2(19)\)

\(\displaystyle 58=2l+38\)

Subtract \(\displaystyle 38\) from both sides

\(\displaystyle 58-38=2l+38-38\)

\(\displaystyle 20=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{20}{2}=\frac{2l}{2}\)

\(\displaystyle 10=l\)

Example Question #1393 : Common Core Math: Grade 4

What is the length of a room with a perimeter of \(\displaystyle 54ft\) and a width of \(\displaystyle 17ft?\)

Possible Answers:

\(\displaystyle 9ft\)

\(\displaystyle 8ft\)

\(\displaystyle 6ft\)

\(\displaystyle 7ft\)

\(\displaystyle 10ft\)

Correct answer:

\(\displaystyle 10ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 54=2l+2(17)\)

\(\displaystyle 54=2l+34\)

Subtract \(\displaystyle 34\) from both sides

\(\displaystyle 54-34=2l+34-34\)

\(\displaystyle 20=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{20}{2}=\frac{2l}{2}\)

\(\displaystyle 10=l\)

Learning Tools by Varsity Tutors