ISEE Lower Level Quantitative : ISEE Lower Level (grades 5-6) Quantitative Reasoning

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : Plane Geometry

How many square units make up the area of the shape below? 

Screen shot 2015 09 28 at 11.50.12 am

Possible Answers:

\(\displaystyle 14\textup { square units}\)

\(\displaystyle 13\textup { square units}\)

\(\displaystyle 12\textup { square units}\)

\(\displaystyle 10\textup { square units}\)

\(\displaystyle 11\textup { square units}\)

Correct answer:

\(\displaystyle 10\textup { square units}\)

Explanation:

The shape is made up of unit squares. We can count the number of squares within the shape to find the area. 

There are \(\displaystyle 10\) squares within the shape. 

Example Question #62 : Plane Geometry

How many square units make up the area of the shape below? 

Screen shot 2015 09 28 at 11.50.32 am

Possible Answers:

\(\displaystyle 2\textup { square units}\)

\(\displaystyle 3\textup { square units}\)

\(\displaystyle 4\textup { square units}\)

\(\displaystyle 1\textup { square unit}\)

\(\displaystyle 5\textup { square units}\)

Correct answer:

\(\displaystyle 5\textup { square units}\)

Explanation:

The shape is made up of unit squares. We can count the number of squares within the shape to find the area. 

There are \(\displaystyle 5\) squares within the shape. 

Example Question #1051 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

What is the length of a rectangular room with a perimeter of \(\displaystyle 42ft\) and a width of \(\displaystyle 7ft?\)

Possible Answers:

\(\displaystyle 18ft\)

\(\displaystyle 14ft\)

\(\displaystyle 28ft\)

\(\displaystyle 12ft\)

\(\displaystyle 22ft\)

Correct answer:

\(\displaystyle 14ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 42=2l+2(7)\)

\(\displaystyle 42=2l+14\)

Subtract \(\displaystyle 14\) from both sides

\(\displaystyle 42-14=2l+14-14\)

\(\displaystyle 28=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{28}{2}=\frac{2l}{2}\)

\(\displaystyle 14=l\)

Example Question #2 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with a perimeter of \(\displaystyle 62ft\) and a width of \(\displaystyle 8ft?\)

 

Possible Answers:

\(\displaystyle 23ft\)

\(\displaystyle 38ft\)

\(\displaystyle 46ft\)

\(\displaystyle 37ft\)

\(\displaystyle 40ft\)

Correct answer:

\(\displaystyle 23ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 62=2l+2(8)\)

\(\displaystyle 62=2l+16\)

Subtract \(\displaystyle 16\) from both sides

\(\displaystyle 62-16=2l+16-16\)

\(\displaystyle 46=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{46}{2}=\frac{2l}{2}\)

\(\displaystyle 23=l\)

Example Question #3 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with a perimeter of \(\displaystyle 92ft\) and a width of \(\displaystyle 21ft?\)

 

Possible Answers:

\(\displaystyle 45ft\)

\(\displaystyle 25ft\)

\(\displaystyle 30ft\)

\(\displaystyle 40ft\)

\(\displaystyle 50ft\)

Correct answer:

\(\displaystyle 25ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 92=2l+2(21)\)

\(\displaystyle 92=2l+42\)

Subtract \(\displaystyle 42\) from both sides

\(\displaystyle 92-42=2l+42-42\)

\(\displaystyle 50=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{50}{2}=\frac{2l}{2}\)

\(\displaystyle 25=l\)

Example Question #123 : Measurement & Data

What is the length of a rectangular room with a perimeter of \(\displaystyle 59ft\) and a width of \(\displaystyle 17ft?\)

Possible Answers:

\(\displaystyle 15.5ft\)

\(\displaystyle 25ft\)

\(\displaystyle 12.5ft\)

\(\displaystyle 12ft\)

\(\displaystyle 15ft\)

Correct answer:

\(\displaystyle 12.5ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 59=2l+2(17)\)

\(\displaystyle 59=2l+34\)

Subtract \(\displaystyle 34\) from both sides

\(\displaystyle 59-34=2l+134-34\)

\(\displaystyle 25=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{25}{2}=\frac{2l}{2}\)

\(\displaystyle 12.5=l\)

Example Question #1052 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

What is the length of a rectangular room with a perimeter of \(\displaystyle 66ft\) and a width of \(\displaystyle 18ft?\)

 

Possible Answers:

\(\displaystyle 15ft\)

\(\displaystyle 12ft\)

\(\displaystyle 11ft\)

\(\displaystyle 14ft\)

\(\displaystyle 13ft\)

Correct answer:

\(\displaystyle 15ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 66=2l+2(18)\)

\(\displaystyle 66=2l+36\)

Subtract \(\displaystyle 36\) from both sides

\(\displaystyle 66-36=2l+36-36\)

\(\displaystyle 30=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{30}{2}=\frac{2l}{2}\)

\(\displaystyle 15=l\)

Example Question #125 : Measurement & Data

What is the length of a rectangular room with a perimeter of \(\displaystyle 60ft\) and a width of \(\displaystyle 14ft?\)

Possible Answers:

\(\displaystyle 16ft\)

\(\displaystyle 30ft\)

\(\displaystyle 18ft\)

\(\displaystyle 26ft\)

\(\displaystyle 32ft\)

Correct answer:

\(\displaystyle 16ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 60=2l+2(14)\)

\(\displaystyle 60=2l+28\)

Subtract \(\displaystyle 28\) from both sides

\(\displaystyle 60-28=2l+28-28\)

\(\displaystyle 32=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{32}{2}=\frac{2l}{2}\)

\(\displaystyle 16=l\)

Example Question #1053 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

What is the length of a rectangular room with a perimeter of \(\displaystyle 40ft\) and a width of \(\displaystyle 6ft?\)

Possible Answers:

\(\displaystyle 28ft\)

\(\displaystyle 32ft\)

\(\displaystyle 14ft\)

\(\displaystyle 16ft\)

\(\displaystyle 18ft\)

Correct answer:

\(\displaystyle 14ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 40=2l+2(6)\)

\(\displaystyle 40=2l+12\)

Subtract \(\displaystyle 12\) from both sides

\(\displaystyle 40-12=2l+12-12\)

\(\displaystyle 28=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{28}{2}=\frac{2l}{2}\)

\(\displaystyle 14=l\)

Example Question #3 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with a perimeter of \(\displaystyle 96ft\) and a width of \(\displaystyle 30ft?\)

Possible Answers:

\(\displaystyle 19ft\)

\(\displaystyle 20ft\)

\(\displaystyle 24ft\)

\(\displaystyle 22ft\)

\(\displaystyle 18ft\)

Correct answer:

\(\displaystyle 18ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 96=2l+2(30)\)

\(\displaystyle 96=2l+60\)

Subtract \(\displaystyle 60\) from both sides

\(\displaystyle 96-60=2l+60-60\)

\(\displaystyle 36=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{36}{2}=\frac{2l}{2}\)

\(\displaystyle 18=l\)

Learning Tools by Varsity Tutors