Intermediate Geometry : Acute / Obtuse Triangles

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #106 : Triangles

Two of the exterior angles of a triangle, taken at different vertices, measure \displaystyle 145^{\circ } and \displaystyle 125^{\circ }. Is the triangle acute, right, or obtuse?

Possible Answers:

Right

Obtuse

Acute 

Correct answer:

Right

Explanation:

At a given vertex, an exterior angle and an interior angle of a triangle form a linear pair, making them supplementary - that is, their measures total \displaystyle 180^{\circ }. The measures of two interior angles can be calculated by subtracting the exterior angle measures from \displaystyle 180^{\circ }:

\displaystyle 180^{\circ } - 145^{\circ } = 35^{\circ }

\displaystyle 180^{\circ } - 125^{\circ } = 55^{\circ }

The triangle has two interior angles of measures \displaystyle 35^{\circ } and \displaystyle 55^{\circ }. The sum of these measures is \displaystyle 35^{\circ }+ 55 ^{\circ } = 90 ^{\circ }, thereby making them complementary. A triangle with two complementary acute angles is a right triangle.

Example Question #102 : Triangles

True or false: It is possible for a triangle to have angles of measure \displaystyle 50^{\circ }\displaystyle 60^{\circ }, and \displaystyle 70^{\circ }.

Possible Answers:

True

False

Correct answer:

True

Explanation:

The sum of the measures of the angles of a triangle is \displaystyle 180^{\circ }. The sum of the three given angle measures is 

\displaystyle 50^{\circ }+ 60 ^{\circ }+ 70^{\circ } = 180^{\circ }.

This makes the triangle possible.

Example Question #23 : How To Find An Angle In An Acute / Obtuse Triangle

True or false: It is possible for a triangle to have three interior angles, each of whose measures are \displaystyle 50^{\circ }.

Possible Answers:

True

False

Correct answer:

False

Explanation:

A triangle with three congruent angles is an equiangular - and equilateral - triangle; such an angle must have three angles that measure \displaystyle 60^{\circ }

Example Question #111 : Triangles

Given: \displaystyle \bigtriangleup ABC with perimeter 40;

\displaystyle AB = 12 , BC = 14

True or false: \displaystyle \angle A \cong \angle B

Possible Answers:

True

False

Correct answer:

True

Explanation:

The perimeter of \displaystyle \bigtriangleup ABC is the sum of the lengths of its sides - that is,

\displaystyle AB + BC + AC = P

The perimeter is 40, so set \displaystyle AB = 12 , BC = 14, P = 40, and solve for \displaystyle AC:

\displaystyle AB + BC + AC = P

\displaystyle 12+14 + AC = 40

\displaystyle 26 + AC = 40

Subtract 26 from both sides:

\displaystyle 26 + AC - 26 = 40 - 26

\displaystyle AC= 14

\displaystyle \overline{BC}\cong \overline{AC}, so by the Isosceles Triangle Theorem, their opposite angles are congruent - that is,

\displaystyle \angle A \cong \angle B.

Example Question #551 : Plane Geometry

\displaystyle \bigtriangleup ABC is an equilateral triangle; \displaystyle M is the midpoint of \displaystyle \overline{BC}; the segment \displaystyle \overline{AM } is constructed. 

True or false: \displaystyle m \angle BAM = 40^{\circ }.

Possible Answers:

False

True

Correct answer:

False

Explanation:

The referenced triangle is below:

Equilateral 2

In an equilateral triangle, the median from \displaystyle A - the segment from \displaystyle A to \displaystyle M, the midpoint of the opposite side \displaystyle \overline{BC} - is also the bisector of the angle \displaystyle \angle BAC, so 

\displaystyle m \angle BAM = \frac{1}{2} \cdot \angle BAC

Each interior angle of an equilateral triangle, including \displaystyle \angle BAC, measures \displaystyle 60^{\circ }, so substitute and evaluate:

\displaystyle m \angle BAM = \frac{1}{2} \cdot 60^{\circ } = 30 ^{\circ }.

Example Question #26 : How To Find An Angle In An Acute / Obtuse Triangle

\displaystyle \bigtriangleup ABC is an equilateral triangle. Locate a point \displaystyle D along \displaystyle \overline{BC} and construct \displaystyle \overline{AD}\displaystyle m \angle ADB = 80^{\circ }

Evaluate \displaystyle m \angle DAC.

Possible Answers:

\displaystyle 20^{\circ }

\displaystyle 30^{\circ }

\displaystyle 25^{\circ }

\displaystyle 15^{\circ }

Correct answer:

\displaystyle 20^{\circ }

Explanation:

The referenced figure is below. Note that \displaystyle m \angle C = 60 ^{\circ }, as is the case with all of the interior angles of an equilateral triangle.

Equilateral

The interior angles of an equilateral triangle each measure \displaystyle 60^{\circ }. An exterior angle of a triangle has as its degree measure the sum of its remote interior angles; specifically, 

\displaystyle m \angle ADB = m\angle C + m \angle DAC

Substitute the known angle measures, and solve:

\displaystyle 80^{\circ }= 60^{\circ } + m \angle DAC

\displaystyle 80^{\circ }- 60^{\circ } = 60^{\circ } + m \angle DAC - 60^{\circ }

\displaystyle 20^{\circ } = m \angle DA C

Example Question #1 : How To Find The Length Of The Hypotenuse Of An Acute / Obtuse Triangle

An acute scalene triangle has one side length of \displaystyle 4 inches and another of \displaystyle 10 inches. Find the length of the hypotenuse. 

Possible Answers:

\displaystyle 4\sqrt{29}in

\displaystyle 116in

\displaystyle 2\sqrt{29} in

\displaystyle 10in

Correct answer:

\displaystyle 2\sqrt{29} in

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \displaystyle a^2+b^2=c^2, where \displaystyle c= the length of the hypotenuse. 

Thus, the solution is:

\displaystyle 4^2+10^2=c^2

\displaystyle 16+100=c^2

\displaystyle c^2=116

\displaystyle c=\sqrt{116}=\sqrt{4\times 29}=\sqrt{4} \sqrt{29}=2\sqrt{29}

Example Question #551 : Plane Geometry

Obtuse_isos_tri

Find the hypotenuse of the obtuse isosceles triangle shown above. 

Possible Answers:

\displaystyle \sqrt{180}ft

\displaystyle \sqrt{90.5}ft

\displaystyle \sqrt{180.5} ft

\displaystyle 180ft

Correct answer:

\displaystyle \sqrt{180.5} ft

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \displaystyle a^2+b^2=c^2, where \displaystyle c= the length of the hypotenuse. 

Thus, the solution is:

\displaystyle 9.5^2+9.5^2=c^2

\displaystyle c^2=90.25+90.25=180.5

\displaystyle c=\sqrt{180.5}

Example Question #3 : How To Find The Length Of The Hypotenuse Of An Acute / Obtuse Triangle

 A scalene triangle has one side length of \displaystyle 12 yards and another side length of \displaystyle 8 yards. Find the hypotenuse. 

Possible Answers:

\displaystyle 16\sqrt{13}yds

\displaystyle 208yds

\displaystyle 4\sqrt{13}yds

\displaystyle \sqrt{144}yds

Correct answer:

\displaystyle 4\sqrt{13}yds

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \displaystyle a^2+b^2=c^2, where \displaystyle c= the length of the hypotenuse. 

Thus, the solution is:

\displaystyle 12^2+8^2=c^2

\displaystyle c^2=144+64=208

\displaystyle c=\sqrt{208}=\sqrt{16\times 13}=\sqrt{16}\sqrt{13}=4\sqrt{13}

Example Question #4 : How To Find The Length Of The Hypotenuse Of An Acute / Obtuse Triangle

Isos_obtus_tri_dos

Find the hypotenuse of the obtuse isosceles triangle shown above. 

Possible Answers:

\displaystyle \sqrt{11}\sqrt{2}m

\displaystyle \sqrt{11}m

\displaystyle 11\sqrt{2}m

\displaystyle \sqrt{121}m

Correct answer:

\displaystyle 11\sqrt{2}m

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \displaystyle a^2+b^2=c^2, where \displaystyle c= the length of the hypotenuse. 

Thus, the solution is:

\displaystyle 11^2+11^2=c^2

\displaystyle c^2=121+121=242

\displaystyle c=\sqrt{242}=\sqrt{121\times 2}=\sqrt{121}\sqrt{2}=11\sqrt{2}

Learning Tools by Varsity Tutors