Intermediate Geometry : Solid Geometry

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #33 : Prisms

Find the volume of the prism.

9

Possible Answers:

\displaystyle 160

\displaystyle 80

\displaystyle 120

\displaystyle 200

Correct answer:

\displaystyle 120

Explanation:

13

Recall how to find the volume of a prism:

\displaystyle \text{Volume of Prism}=\text{Area of base}\times\text{height of prism}

Find the area of the base, which is a right triangle.

\displaystyle \text{Area of Right Triangle}=\frac{1}{2}(\text{base}\times\text{height})

\displaystyle \text{Area of Right Triangle Base}=\frac{1}{2}(3)(8)=12

Now, find the volume of the prism.

\displaystyle \text{Volume of Prism}=12\times 10=120

Example Question #12 : How To Find The Volume Of A Prism

Find the volume of the prism.

10

Possible Answers:

\displaystyle 660

\displaystyle 630

\displaystyle 600

\displaystyle 690

Correct answer:

\displaystyle 630

Explanation:

13

Recall how to find the volume of a prism:

\displaystyle \text{Volume of Prism}=\text{Area of base}\times\text{height of prism}

Find the area of the base, which is a right triangle.

\displaystyle \text{Area of Right Triangle}=\frac{1}{2}(\text{base}\times\text{height})

\displaystyle \text{Area of Right Triangle Base}=\frac{1}{2}(9)(10)=45

Now, find the volume of the prism.

\displaystyle \text{Volume of Prism}=45\times 14=630

Example Question #31 : Prisms

Find the volume of the prism.

11

Possible Answers:

\displaystyle 432

\displaystyle 420

\displaystyle 444

\displaystyle 408

Correct answer:

\displaystyle 420

Explanation:

13

Recall how to find the volume of a prism:

\displaystyle \text{Volume of Prism}=\text{Area of base}\times\text{height of prism}

Find the area of the base, which is a right triangle.

\displaystyle \text{Area of Right Triangle}=\frac{1}{2}(\text{base}\times\text{height})

\displaystyle \text{Area of Right Triangle Base}=\frac{1}{2}(7)(10)=35

Now, find the volume of the prism.

\displaystyle \text{Volume of Prism}=35\times 12=420

Example Question #1133 : Intermediate Geometry

Find the volume of the prism.

12

Possible Answers:

\displaystyle 2918

\displaystyle 2871

\displaystyle 2456

\displaystyle 2211

Correct answer:

\displaystyle 2871

Explanation:

13

Recall how to find the volume of a prism:

\displaystyle \text{Volume of Prism}=\text{Area of base}\times\text{height of prism}

Find the area of the base, which is a right triangle.

\displaystyle \text{Area of Right Triangle}=\frac{1}{2}(\text{base}\times\text{height})

\displaystyle \text{Area of Right Triangle Base}=\frac{1}{2}(11)(18)=99

Now, find the volume of the prism.

\displaystyle \text{Volume of Prism}=99\times 29 =2871

Example Question #1131 : Intermediate Geometry

Find the volume of the prism.

1

Possible Answers:

\displaystyle 396

\displaystyle 402

\displaystyle 294

\displaystyle 390

Correct answer:

\displaystyle 396

Explanation:

 

13

Recall how to find the volume of any prism.

\displaystyle \text{Volume of Prism}=\text{Area of Base}\times \text{Height}

Since the base is a trapezoid, recall how to find the area of a trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{base_1+base_2}{2}(\text{height})

Plug in the given bases and height to find the area of the trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{3+8}{2}(12)=66

Now, plug this in to find the volume of the prism.

\displaystyle \text{Volume of Prism}=66 \times 6 =396

Example Question #171 : Solid Geometry

Find the volume of the prism.

2

Possible Answers:

\displaystyle 1320

\displaystyle 780

\displaystyle 900

\displaystyle 660

Correct answer:

\displaystyle 660

Explanation:

13

Recall how to find the volume of any prism.

\displaystyle \text{Volume of Prism}=\text{Area of Base}\times \text{Height}

Since the base is a trapezoid, recall how to find the area of a trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{base_1+base_2}{2}(\text{height})

Plug in the given bases and height to find the area of the trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{4+8}{2}(11)=66

Now, plug this in to find the volume of the prism.

\displaystyle \text{Volume of Prism}=66 \times 10 =660

Example Question #41 : Prisms

Find the volume of the prism.

3

Possible Answers:

\displaystyle 1338

\displaystyle 1288

\displaystyle 1344

\displaystyle 1296

Correct answer:

\displaystyle 1344

Explanation:

13

Recall how to find the volume of any prism.

\displaystyle \text{Volume of Prism}=\text{Area of Base}\times \text{Height}

Since the base is a trapezoid, recall how to find the area of a trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{base_1+base_2}{2}(\text{height})

Plug in the given bases and height to find the area of the trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{6+10}{2}(12)=96

Now, plug this in to find the volume of the prism.

\displaystyle \text{Volume of Prism}=96\times14 =1344

Example Question #21 : How To Find The Volume Of A Prism

Find the volume of the prism.

4

Possible Answers:

\displaystyle 1728

\displaystyle 1818

\displaystyle 1706

\displaystyle 1694

Correct answer:

\displaystyle 1728

Explanation:

13

Recall how to find the volume of any prism.

\displaystyle \text{Volume of Prism}=\text{Area of Base}\times \text{Height}

Since the base is a trapezoid, recall how to find the area of a trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{base_1+base_2}{2}(\text{height})

Plug in the given bases and height to find the area of the trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{4+14}{2}(12)=108

Now, plug this in to find the volume of the prism.

\displaystyle \text{Volume of Prism}=108\times 16 =1728

Example Question #41 : Prisms

Find the volume of the prism.

5

Possible Answers:

\displaystyle 972

\displaystyle 900

\displaystyle 890

\displaystyle 920

Correct answer:

\displaystyle 972

Explanation:

13

Recall how to find the volume of any prism.

\displaystyle \text{Volume of Prism}=\text{Area of Base}\times \text{Height}

Since the base is a trapezoid, recall how to find the area of a trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{base_1+base_2}{2}(\text{height})

Plug in the given bases and height to find the area of the trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{3+15}{2}(9)=81

Now, plug this in to find the volume of the prism.

\displaystyle \text{Volume of Prism}=81\times 12 =972

Example Question #1142 : Intermediate Geometry

Find the volume of the prism.

7

Possible Answers:

\displaystyle 1900

\displaystyle 1860

\displaystyle 1890

\displaystyle 1910

Correct answer:

\displaystyle 1890

Explanation:

13

Recall how to find the volume of any prism.

\displaystyle \text{Volume of Prism}=\text{Area of Base}\times \text{Height}

Since the base is a trapezoid, recall how to find the area of a trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{base_1+base_2}{2}(\text{height})

Plug in the given bases and height to find the area of the trapezoid.

\displaystyle \text{Area of Trapezoid}=\frac{12+16}{2}(9)=126

Now, plug this in to find the volume of the prism.

\displaystyle \text{Volume of Prism}=126\times 15 =1890

Learning Tools by Varsity Tutors