Intermediate Geometry : How to find an angle in a parallelogram

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #361 : Intermediate Geometry

Parallelogram_7

In the parallelogram shown above, angle \displaystyle E is \displaystyle 72 degrees. Find the measure of angle \displaystyle G.

Possible Answers:

\displaystyle 90^\circ

\displaystyle 144^\circ

\displaystyle 72^\circ

\displaystyle 92^\circ

Correct answer:

\displaystyle 72^\circ

Explanation:

A parallelogram must have equivalent opposite interior angles. Additionally, the sum of all four interior angles must equal \displaystyle 360 degrees. And, the adjacent interior angles must be supplementary angles (sum of \displaystyle 180 degrees). 

Since, angles \displaystyle E and \displaystyle G are opposite interior angles, thus they must be equivalent. 

, therefore 

Example Question #361 : Intermediate Geometry

Parallelogram_7

In the parallelogram shown above, angle \displaystyle E is \displaystyle 72 degrees. Find the sum of angles \displaystyle F and \displaystyle H

Possible Answers:

\displaystyle 104^\circ

\displaystyle 140^\circ

\displaystyle 216^\circ

\displaystyle 126^\circ

Correct answer:

\displaystyle 216^\circ

Explanation:

A parallelogram must have equivalent opposite interior angles. Additionally, the sum of all four interior angles must equal \displaystyle 360 degrees. And, the adjacent interior angles must be supplementary angles (sum of \displaystyle 180 degrees).


Thus, the solution is:

\displaystyle 180-72=108^\circ

Since both angles \displaystyle H and \displaystyle F equal \displaystyle 108. There sum must equal \displaystyle 108+108=216^\circ

Example Question #13 : How To Find An Angle In A Parallelogram

Parallelogram_7

Using the parallelogram above, find the sum of angles \displaystyle F and \displaystyle G. 

Possible Answers:

\displaystyle 180^\circ

\displaystyle 90^\circ

\displaystyle 270^\circ

Not enough information is provided to find an answer. 

Correct answer:

\displaystyle 180^\circ

Explanation:

A parallelogram must have equivalent opposite interior angles. Additionally, the sum of all four interior angles must equal \displaystyle 360 degrees.

Also, the adjacent interior angles must be supplementary angles (sum of \displaystyle 180 degrees).

Since, angles \displaystyle F and \displaystyle G are adjacent to each other they must be supplementary angles.

Thus, the sum of these two angles must equal \displaystyle 180 degrees. 

Example Question #11 : How To Find An Angle In A Parallelogram

A paralellogram as two angles that are 65 degrees and 115 degrees respectively.  What are the other two angles in the paralellogram?

Possible Answers:

\displaystyle \text {Not enough information}

\displaystyle 25^{\circ} \text{and} \; 65^{\circ}

\displaystyle 180^{\circ} \text{and} \; 360^{\circ}

\displaystyle 50^{\circ} \text{and} \; 65^{\circ}

\displaystyle 65^{\circ} \text{and} \; 115^{\circ}

Correct answer:

\displaystyle 65^{\circ} \text{and} \; 115^{\circ}

Explanation:

This question is very simple to answer if you remember that ALL paralellograms have two pairs of equal and opposite angles, and that the four angles in any quadrilateral MUST add up to 360 degrees. 

Because the angles given are different, we know that they are supplementary and the other two missing angles MUST be the same.

\displaystyle 65^{\circ} + 115^{\circ} + 65^{\circ} + 115^{\circ} = 360^{\circ}

Example Question #32 : Parallelograms

Given: Regular Pentagon \displaystyle PENTA with center \displaystyle C. Construct segments \displaystyle \overline{CP} and \displaystyle \overline{CN} to form Quadrilateral \displaystyle CPEN.

True or false: Quadrilateral \displaystyle CPEN is a parallelogram.

Possible Answers:

True

False

Correct answer:

False

Explanation:

Below is regular Pentagon \displaystyle PENTA with center \displaystyle C, a segment drawn from \displaystyle C to each vertex - that is, each of its radii drawn.

Pentagon a

The measure of each angle of a regular pentagon can be calculated by setting \displaystyle N equal to 5 in the formula

\displaystyle \frac{(N-2)180^{\circ }}{N}

and evaluating:

\displaystyle \frac{(5-2)180^{\circ }}{5} = \frac{3 \cdot 180^{\circ }}{5} = \frac{540^{\circ }}{5} = 108^{\circ }

Specifically, 

\displaystyle m \angle PEN = 108 ^{\circ }

By symmetry, each radius bisects one of these angles. Specifically, 

\displaystyle m \angle CPE = \frac{1}{2} m \angle APE = \frac{1}{2} \cdot 108^{\circ } = 54 ^{\circ }

By the Same-Side Interior Angles Theorem, consecutive angles of a parallelogram are supplementary - that is, their measures total \displaystyle 180^{\circ }. However,

\displaystyle m \angle PEN + m \angle CPE = 108 ^{\circ } + 54 ^{\circ } = 162^{\circ },

violating these conditions. Therefore, Quadrilateral \displaystyle CPEN is not a parallelogram.

Example Question #11 : How To Find An Angle In A Parallelogram

Given: Quadrilateral \displaystyle ABCD such that \displaystyle m \angle A = 80 ^{\circ } and \displaystyle m \angle B = 100^{\circ }.

True or false: It follows that Quadrilateral \displaystyle ABCD is a parallelogram.

Possible Answers:

True

False

Correct answer:

False

Explanation:

\displaystyle m \angle A + m \angle B = 80^{\circ } +100 ^{\circ } = 180^{\circ }, making \displaystyle \angle A and \displaystyle \angle B supplementary. By the Converse of the Same Side Interior Angles Theorem, , it does follow that \displaystyle \overline{AD} || \overline{BC}. However, without knowing the measures of the other two angles, nothing further can be concluded about Quadrilateral \displaystyle ABCD. Below are a parallelogram and a trapezoid, both of which have these two angles of these measures.

Parallelograms

Example Question #12 : How To Find An Angle In A Parallelogram

Given: Parallelogram \displaystyle ABCD such that \displaystyle \angle A \cong \angle B and \displaystyle \angle C \cong \angle D.

True or false: It follows that Parallelogram \displaystyle ABCD is a rectangle.

Possible Answers:

False

True

Correct answer:

True

Explanation:

By the Same-Side Interior Angles Theorem, consecutive angles of a parallelogram can be proved to be supplementary - that is, their angle measures total \displaystyle 180^{\circ }. Specifically, \displaystyle \angle A and \displaystyle \angle B are a pair of supplementary angles. Since they are also congruent, it follows that both are right angles. For the same reason, \displaystyle \angle C and \displaystyle \angle D are also right angles. The parallelogram, having four right angles, is a rectangle by definition.

 

Example Question #11 : How To Find An Angle In A Parallelogram

Given: Rectangle \displaystyle ABCD with diagonals \displaystyle \overline{AC} and \displaystyle \overline{BD} intersecting at point \displaystyle X.

True or false: \displaystyle \angle AXB must be a right angle.

Possible Answers:

False

True

Correct answer:

False

Explanation:

The diagonals of a parallelogram are perpendicular - and, consequently, \displaystyle \angle AXB is a right angle. - if and only if the parallelogram is a rhombus, a figure with four sides of equal length. Not all rectangles have four congruent sides.  Therefore, \displaystyle \angle AXB need not be a right angle.

Example Question #202 : Quadrilaterals

Given: Parallelogram \displaystyle ABCD such that \displaystyle m \angle A = 90^{\circ }.

True or false: Parallelogram \displaystyle ABCD must be a rectangle.

Possible Answers:

True 

False

Correct answer:

True 

Explanation:

A rectangle is a parallelogram with four right angles.

Consecutive angles of a parallelogram are supplementary. If one angle of a parallelogram is given to be right, then its neighboring angles, being supplementary to a right angle, are right as well; also, opposite angles of a parallelogram are congruent, so the opposite angle is also right. All four angles must be right, making the parallelogram a rectangle by definition.

Learning Tools by Varsity Tutors