All HSPT Math Resources
Example Questions
Example Question #4 : How To Find The Surface Area Of A Prism
The area of a given object is 24 yd2. What is the area of this object in in2?
20,736 in2
None of the other answers
10,368 in2
31,104 in2
864 in2
31,104 in2
Converting squared units is not difficult, though you have to be careful not to make a simple mistake. It is tempting to think you can merely multiply the initial value (24) by 36, as though you were converting from yards to inches.
Begin by thinking this through as follows. In the case of a single dimension, we know that:
1 yd = 36 in
Now, think the case of a square with dimensions 1 yd x 1 yd. This square has the following dimensions in inches: 36 in x 36 in. The area is therefore 36 * 36 = 1296 in2. This holds for all two-dimensional conversions. Therefore, the two dimensional conversion equation is:
1 yd2 = 1296 in2
Based on this, we can convert our value 24 yd2 thus: 24 * 1296 = 31,104 in2.
Example Question #3 : Non Cubic Prisms
What is the surface area of an equilateral triangluar prism with edges of 6 in and a height of 12 in?
Let and .
The surface area of the prism can be broken into three rectangular sides and two equilateral triangular bases.
The area of the sides is given by: , so for all three sides we get .
The equilateral triangle is also an equiangular triangle by definition, so the base has congruent sides of 6 in and three angles of 60 degrees. We use a special right traingle to figure out the height of the triangle: 30 - 60 - 90. The height is the side opposite the 60 degree angle, so it becomes or 5.196.
The area for a triangle is given by and since we need two of them we get .
Therefore the total surface area is .
Example Question #1 : How To Find The Surface Area Of A Sphere
A solid sphere is cut in half to form two solid hemispheres. What is the ratio of the surface area of one of the hemispheres to the surface area of the entire sphere before it was cut?
1/2
3/4
2/3
3/2
1
3/4
The surface area of the sphere before it was cut is equal to the following:
surface area of solid sphere = 4πr2, where r is the length of the radius.
Each hemisphere will have the following shape:
In order to determine the surface area of the hemisphere, we must find the surface area of the flat region and the curved region. The flat region will have a surface area equal to the area of a circle with radius r.
area of flat part of hemisphere = πr2
The surface area of the curved portion of the hemisphere will equal one-half of the surface area of the uncut sphere, which we established to be 4πr2.
area of curved part of hemisphere = (1/2)4πr2 = 2πr2
The total surface area of the hemisphere will be equal to the sum of the surface areas of the flat part and curved part of the hemisphere.
total surface area of hemisphere = πr2 + 2πr2 = 3πr2
Finally, we must find the ratio of the surface area of the hemisphere to the surface area of the uncut sphere.
ratio = (3πr2)/(4πr2) = 3/4
The answer is 3/4.
Example Question #2 : Spheres
The volume of a sphere is 2304π in3. What is the surface area of this sphere in square inches?
None of the other answers
144π
576π
216π
36π
576π
To solve this, we must first begin by finding the radius of the sphere. To do this, recall that the volume of a sphere is:
V = (4/3)πr3
For our data, we can say:
2304π = (4/3)πr3; 2304 = (4/3)r3; 6912 = 4r3; 1728 = r3; 12 * 12 * 12 = r3; r = 12
Now, based on this, we can ascertain the surface area using the equation:
A = 4πr2
For our data, this is:
A = 4π*122 = 576π
Example Question #5 : Spheres
A sphere has its center at the origin. A point on its surface is found on the x-y axis at (6,8). In square units, what is the surface area of this sphere?
200π
(400/3)π
400π
None of the other answers
40π
400π
To find the surface area, we must first find the radius. Based on our description, this passes from (0,0) to (6,8). This can be found using the distance formula:
62 + 82 = r2; r2 = 36 + 64; r2 = 100; r = 10
It should be noted that you could have quickly figured this out by seeing that (6,8) is the hypotenuse of a 6-8-10 triangle (which is a multiple of the "easy" 3-4-5).
The rest is easy. The surface area of the sphere is defined by:
A = 4πr2 = 4 * 100 * π = 400π
Example Question #2 : How To Find The Surface Area Of A Sphere
A sphere is perfectly contained within a cube that has a surface area of 726 square units. In square units, what is the surface area of the sphere?
484π
None of the other answers
30.25π
11π
121π
121π
To begin, we must determine the dimensions of the cube. To do this, recall that the surface area of a cube is made up of six squares and is thus defined as: A = 6s2, where s is one of the sides of the cube. For our data, this gives us:
726 = 6s2; 121 = s2; s = 11
Now, if the sphere is contained within the cube, that means that 11 represents the diameter of the sphere. Therefore, the radius of the sphere is 5.5 units. The surface area of a sphere is defined as: A = 4πr2. For our data, that would be:
A = 4π * 5.52 = 30.25 * 4 * π = 121π
Example Question #3 : How To Find The Surface Area Of A Sphere
The area of a circle with radius 4 divided by the surface area of a sphere with radius 2 is equal to:
3
2
0.5
π
1
1
The surface area of a sphere is 4πr2. The area of a circle is πr2. 16/16 is equal to 1.
Example Question #13 : Spheres
What is the ratio of the surface area of a cube to the surface area of a sphere inscribed within it?
6/π
2π
π/3
3/π
4/π
6/π
Let's call the radius of the sphere r. The formula for the surface area of a sphere (A) is given below:
A = 4πr2
Because the sphere is inscribed inside the cube, the diameter of the sphere is equal to the side length of the cube. Because the diameter is twice the length of the radius, the diameter of the sphere is 2r. This means that the side length of the cube is also 2r.
The surface area for a cube is given by the following formula, where s represents the length of each side of the cube:
surface area of cube = 6s2
The formula for surface area of a cube comes from the fact that each face of the cube has an area of s2, and there are 6 faces total on a cube.
Since we already determined that the side length of the cube is the same as 2r, we can replace s with 2r.
surface area of cube = 6(2r)2 = 6(2r)(2r) = 24r2.
We are asked to find the ratio of the surface area of the cube to the surface area of the sphere. This means we must divide the surface area of the cube by the surface area of the sphere.
ratio = (24r2)/(4πr2)
The r2 term cancels in the numerator and denominator. Also, 24/4 simplifes to 6.
ratio = (24r2)/(4πr2) = 6/π
The answer is 6/π.
Example Question #1 : How To Find The Surface Area Of A Sphere
What is the surface area of a hemisphere with a diameter of ?
A hemisphere is half of a sphere. The surface area is broken into two parts: the spherical part and the circular base.
The surface area of a sphere is given by .
So the surface area of the spherical part of a hemisphere is .
The area of the circular base is given by . The radius to use is half the diameter, or 2 cm.
Example Question #2111 : Hspt Mathematics
Find the surface area of a sphere with a radius of .
Write the surface area formula for a sphere.
Substitute the value of the radius.