All HiSET: Math Resources
Example Questions
Example Question #11 : Dilations
On the graph of the equation
,
perform a dilation with center and scale factor .
Give the equation of the resulting circle.
None of the other choices gives the correct response.
The graph of the equation
is a circle with center and radius .
,
or
is a circle with center at origin and radius 8.
A dilation of a circle with scale factor will result in multiplying that radius by , so the radius of the circle will be .
To find the center of the image, note that the origin is 4 units below . The center of the new circle must be units below , so this center will be , or . See the figure below:
Substituting in the circle formula, this is
,
or
.
Example Question #12 : Dilations
On the above obtuse triangle perform a dilation of scale factor with the center of the dilation at the circumcenter of the triangle. Let the images of , , and be , , and , respectively.
Which of the following correctly shows relative to ?
The circumcenter of a triangle can be located by finding the intersection of the perpendicular bisectors of the three sides of the triangle. The perpendicular bisectors are shown below, with point of intersection :
Construct , , and . A dilation of scale factor with center can be performed by letting , , and be the midpoints of , , and , respectively:
Removing the perpendicular bisectors and , we see that the correct choice is the figure
Example Question #141 : Hi Set: High School Equivalency Test: Math
Find the circumference of a circle with the following diameter:
A circle's circumference is calculated using the following formula:
In this equation, the variable, , is the circle's radius.
In our problem we are given the diameter. The diameter is related to the radius in the following manner:
Let's rewrite our formula by substituting the diameter for the radius.
Let's substitute and solve.
Example Question #142 : Hi Set: High School Equivalency Test: Math
Which of the following is closest to the length of a 270-degree arc of a circle with radius 20?
A circle with radius 20 has as its circumference times this, or
There are 360 degrees in a circle, so a 270-degree arc is
of the circle. Therefore, the length of this arc is
,
so a reasonable estimate of the length of this arc is
Of the five choices, 95 comes closest to the correct length.
Example Question #3 : Equations Of Circles
A circle on the coordinate plane has a diameter with endpoints and . Give its equation.
Insufficient information exists to determine its equation.
The equation, in standard form, of a circle on the coordinate plane with center and radius is
.
It is necessary to find the center and the radius of the circle in order to determine its equation.
The center of the circle is the midpoint of a given diameter. The midpoint of a segment with endpoints and can be found by applying the midpoint formula:
Setting :
Setting
The midpoint, and the center of the circle, is at .
The radius of the circle is the distance from the center to an endpoint, so we can use the distance formula
.
Substitute :
and
Now, set in the standard form of the equation of a circle, and the result is
Example Question #4 : Equations Of Circles
A circle on the coordinate plane has a radius with endpoints and . Give its equation.
Insufficient information exists to determine its equation.
Insufficient information exists to determine its equation.
The equation, in standard form, of a circle on the coordinate plane with center and radius is
.
It is necessary to find the center and the radius of the circle in order to determine its equation. The radius of the circle can be determined by applying the distance formula to the coordinates of the endpoints of the radius. However, it is not clear from the information given which endpoint is the center of the circle. Therefore, while can be determined, cannot. The correct response is that insufficient information exists to determine its equation.
Example Question #1 : Equations Of Circles
What is the circumference of a circle with an area of ?
Step 1: Since we are given the area, let's first find the radius of the circle.
If the area of a circle is calculated by: , we can plug in the values that are given to us. .
We have . We will divide by .
. To find the radius, we will take the square root of both sides.
So, .
Step 2: Now that we have the radius, we will now find the circumference.
The circumference formula by using the radius is .
Plug in all the information that we have...
Example Question #5 : Equations Of Circles
A circle on the coordinate plane has center and circumference .
Give its equation.
The standard form of the equation of a circle with center at and radius is
The circumference of the circle is ; to find the radius, divide this circumference by :
Now, set in the equation of the circle:
Simplifying:
,
the correct equation.
Example Question #5 : Equations Of Circles
A circle on the coordinate plane has center and area .
Give its equation.
The standard form of the equation of a circle with center at and radius is
The area of the circle is ; to find the radius, substitute in the formula:
We do not need to find . Set in the equation of the circle:
Simplifying:
,
the correct equation.
Example Question #141 : Hi Set: High School Equivalency Test: Math
A circle on the coordinate plane has its center at and passes through . Give its circumference.
The information given is insufficient to answer the question
The radius of the circle is the distance between its center and a point that it passes through. This radius can be calculated using the distance formula:
.
Setting :
The circumference of a circle is equal to multiplied by the radius, so
,
the correct response.
Certified Tutor
Certified Tutor