High School Math : Pentagons

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Pentagons

What is the interior angle measure of any regular pentagon?

Possible Answers:

\displaystyle 45

\displaystyle 90

\displaystyle 72

\displaystyle 108

Correct answer:

\displaystyle 108

Explanation:

 

To find the angle of any regular polygon you find the number of sides \displaystyle n. For a pentagon, \displaystyle n=5.

You then subtract 2 from the number of sides yielding 3.

Take 3 and multiply it by 180 degrees to yield the total number of degrees in the regular pentagon. \displaystyle 3*180=540

Then to find one individual angle we divide 540 by the total number of angles 5, \displaystyle \frac{540}{5}=108

The answer is \displaystyle 108.

Example Question #2 : Pentagons

What is the measure of each interior angle of a regular pentagon?

Possible Answers:

\displaystyle 90^o

\displaystyle 108^o

\displaystyle 180^o

\displaystyle 120^o

Correct answer:

\displaystyle 108^o

Explanation:

The following equation can be used to determine the measure of an interior angle of a regular polygon, where \displaystyle \small n equals the number of sides.

\displaystyle \angle=\frac{180(n-2)}{n}

In a pentagon, \displaystyle \small n=5.

\displaystyle \angle=\frac{180(5-2)}{5}

Now we can solve for the angle.

\displaystyle \angle=\frac{180(3)}{5}=\frac{540}{5}=108^o

Example Question #3 : Pentagons

Find the interior angle of the following regular pentagon:

Angle_length_of_side_pentagon

Possible Answers:

\displaystyle 116^{\circ}

\displaystyle 110^{\circ}

\displaystyle 114^{\circ}

\displaystyle 108^{\circ}

\displaystyle 112^{\circ}

Correct answer:

\displaystyle 108^{\circ}

Explanation:

The formula for the sum of the interior angles of a polygon is

\displaystyle X=(s-2)(180^{\circ}),

where \displaystyle s is the number of sides in the polygon

Plugging in our values, we get:

\displaystyle X=(5-2)(180^{\circ})

\displaystyle X=540^{\circ}

Dividing the sum of the interior angles by the number of angles in the polygon, we get the value for each interior angle:

\displaystyle \frac{X}{5}=\frac{540^{\circ}}{5}=108^{\circ}

Example Question #3 : Pentagons

What is the measure of an interior angle of a regular pentagon?

Possible Answers:

\displaystyle 90

\displaystyle 108

\displaystyle 60

\displaystyle 120

Correct answer:

\displaystyle 108

Explanation:

The measure of an interior angle of a regular polygon can be determined using the following equation, where \displaystyle n equals the number of sides:

\displaystyle \angle=\frac{180(n-2)}{n}

\displaystyle \angle=\frac{180(5-2)}{5}=\frac{180(3)}{5}=108

Example Question #491 : Plane Geometry

What is the perimeter of the pentagon?

Question_9

Possible Answers:

\displaystyle 30

\displaystyle 36

\displaystyle 60

\displaystyle 24

Correct answer:

\displaystyle 30

Explanation:

The perimeter of a polygon is found by calculating the sum of all of the side lengths. In this instance, the polygon is regular, so the perimeter can be found by mulitplying the length of one side by the total number of sides:

\displaystyle P=l\times n=6\times 5=30

Example Question #3 : Pentagons

Find the length of the diagonal of the following pentagon:

Area_pentagon

Possible Answers:

\displaystyle 3.0\ m

\displaystyle 3.3\ m

\displaystyle 3.1\ m

\displaystyle 3.2\ m

 

\displaystyle 3.4\ m

Correct answer:

\displaystyle 3.4\ m

Explanation:

Use the Pythagorean Theorem to find the length of the diagonal:

\displaystyle (\frac{1}{2}side)^2+(apothem)^2=(diagonal)^2

\displaystyle A^2+B^2 = C^2

\displaystyle (2\ m)^2+(2.75\ m)^2 = C^2

\displaystyle C\approx 3.4\ m

Example Question #4 : Pentagons

Find the length of the diagonal of the following pentagon:

Screen_shot_2014-03-11_at_8.34.46_pm

Possible Answers:

\displaystyle 3\sqrt{2}\ m

\displaystyle 4\sqrt{3} \ m

\displaystyle 6\ m

\displaystyle 2\sqrt{3}\ m

\displaystyle 6\sqrt{2}\ m

Correct answer:

\displaystyle 3\sqrt{2}\ m

Explanation:

Use the Pythagorean Theorem to find the length of the diagonal:

\displaystyle (\frac{1}{2}side)^2+(apothem)^2=(diagonal)^2

\displaystyle A^2+B^2 = C^2

\displaystyle (3\ m)^2+(3\ m)^2=C^2

\displaystyle C=3\sqrt{2}\ m

Example Question #1 : Pentagons

What is the side length of a regular pentagon with a perimeter of \displaystyle 80?

Possible Answers:

\displaystyle 8

\displaystyle 40

\displaystyle 16

\displaystyle 12

Correct answer:

\displaystyle 16

Explanation:

To find the side length of a regular pentagon with a perimeter of \displaystyle 80 you must use the equation for the perimeter of a pentagon.

The equation is \displaystyle Perimeter=(side\: length)*(number\: ofsides)

Plug in the numbers for perimeter and number of sides to get \displaystyle 80=(side\: length)*(5)

Divide each side of the equation by the number of sides to get the answer for the side length. \displaystyle \frac{80}{5}=\frac{(side\: length)*(5)}{5}

The answer is \displaystyle \frac{80}{5}=16.

Example Question #1 : Pentagons

Find the length of the side of the following pentagon.

Angle_length_of_side_pentagon

The perimeter of the pentagon is \displaystyle 30\ m.

Possible Answers:

\displaystyle 6\ m

 

 

 

\displaystyle 4\ m

\displaystyle 7\ m

\displaystyle 5\ m

\displaystyle 8\ m

Correct answer:

\displaystyle 6\ m

 

 

 

Explanation:

The formula for the perimeter of a regular pentagon is

\displaystyle P = 5(s),

where \displaystyle s represents the length of the side.

Plugging in our values, we get:

\displaystyle 30\ m=5(s)

\displaystyle s=6\ m

Example Question #3 : How To Find The Length Of The Side Of A Pentagon

Find the length of the side of the following pentagon.

Angle_length_of_side_pentagon

The perimeter of the pentagon is \displaystyle 20\ m.

Possible Answers:

\displaystyle 3\ m

\displaystyle 7\ m

\displaystyle 9\ m

\displaystyle 4\ m

\displaystyle 5\ m

 

 

 

Correct answer:

\displaystyle 4\ m

Explanation:

The formula for the perimeter of a regular pentagon is

\displaystyle P = 5(s),

where \displaystyle s represents the length of the side.

Plugging in our values, we get:

\displaystyle 20\ m = 5(s)

\displaystyle s=4\ m

 

 

Learning Tools by Varsity Tutors