High School Math : Geometry

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Circles

Consider a circle centered at the origin with a circumference of 13\pi. What is the x value when y = 3? Round your answer to the hundreths place. 

Possible Answers:

5.77

10.00

5.8

None of the available answers

5.778

Correct answer:

5.77

Explanation:

The formula for circumference of a circle is C=2\pi r, so we can solve for r:

2\pi r=13\pi

\frac{2\pi r}{\pi}=\frac{13\pi}{\pi}

2r=13

r=\frac{13}{2}=6.5

We now know that the hypotenuse of the right triangle's length is 13.5. We can form a right triangle from the unit circle that fits the Pythagorean theorem as such:

x^2+y^2=r^2

Or, in this case:

x^2+3^3=6.5^2

x^2=42.26-9

x^2=33.25

x=\sqrt{33.25}=5.77

Example Question #241 : High School Math

What is the radius of a circle with a circumference of ?

Possible Answers:

Correct answer:

Explanation:

To find the radius of a circle given the circumference we must first know the equation for the circumference of a circle which is

 

Then we plug in the circumference into the equation yielding 

We then divide each side by  giving us 

The answer is .

Example Question #2 : How To Find The Length Of A Radius

A circle has an area of 36π inches. What is the radius of the circle, in inches?

 

Possible Answers:

18

6

36

9

Correct answer:

6

Explanation:

We know that the formula for the area of a circle is πr2. Therefore, we must set 36π equal to this formula to solve for the radius of the circle.

36π = πr2

36 = r2

6 = r

Example Question #3 : How To Find The Length Of A Radius

Circle X is divided into 3 sections: A, B, and C. The 3 sections are equal in area. If the area of section C is 12π, what is the radius of the circle?

Act_math_170_02

         Circle X

 

 

Possible Answers:

7

4

6

√12

Correct answer:

6

Explanation:

Find the total area of the circle, then use the area formula to find the radius.

Area of section A = section B = section C

Area of circle X = A + B + C = 12π+ 12π + 12π = 36π

Area of circle =  where r is the radius of the circle

36π = πr2

36 = r2

√36 = r

6 = r 

 

Example Question #4 : How To Find The Length Of A Radius

The specifications of an official NBA basketball are that it must be 29.5 inches in circumference and weigh 22 ounces.  What is the approximate radius of the basketball? 

 

Possible Answers:

5.43 inches

9.39 inches

14.75 inches

4.70 inches

3.06 inches

Correct answer:

4.70 inches

Explanation:

To Find your answer, we would use the formula:  C=2πr. We are given that C = 29.5. Thus we can plug in to get  [29.5]=2πr and then multiply 2π to get 29.5=(6.28)r.  Lastly, we divide both sides by 6.28 to get 4.70=r.   (The information given of 22 ounces is useless) 

 

Example Question #2 : How To Find The Length Of A Radius

If the circumference of a circle is , what is the radius?

Possible Answers:

Correct answer:

Explanation:

The formula for circumference is .

Plug in our given information.

Divide both sides by .

Example Question #61 : Radius

Find the radius of a circle with area

Possible Answers:

Correct answer:

Explanation:

Since the formula for the area of a triangle is 

plug in the given area and isolate for . This yields 13. 

Example Question #11 : How To Find The Length Of A Radius

The circumference of a circle is 45 inches.  The circle's radius is ____ inches.

Possible Answers:

Correct answer:

Explanation:

When you know the circumference of a circle, you can determine its diameter by dividing the circumference by .  Then, when you have the diameter, you can determine the radius by dividing the diameter by 2.

Example Question #111 : Circles

A circle with center (8, 5) is tangent to the y-axis in the standard (x,y) coordinate plane. What is the radius of this circle? 

Possible Answers:

5

4

16

8

Correct answer:

8

Explanation:

For the circle to be tangent to the y-axis, it must have its outer edge on the axis. The center is 8 units from the edge.

Example Question #1 : Radius

A circle has an area of . What is the radius of the circle, in inches?

Possible Answers:

49 inches

7 inches

16 inches

24.5 inches

14 inches

Correct answer:

7 inches

Explanation:

We know that the formula for the area of a circle is πr2. Therefore, we must set 49π equal to this formula to solve for the radius of the circle.

49π = πr2

49 = r2

7 = r

Learning Tools by Varsity Tutors