High School Math : Calculus II — Integrals

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #44 : Finding Integrals

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To solve this problem, we can use the anti-power rule or reverse power rule. We raise the exponent on the variables by one and divide by the new exponent.

For this problem, we'll treat  as  since anything to the zero power is one.

Since the derivative of any constant is , when we take the indefinite integral, we add a  to compensate for any constant that might be there.

From here we can simplify.

Example Question #45 : Finding Integrals

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To solve this problem, we can use the anti-power rule or reverse power rule. We raise the exponent on the variables by one and divide by the new exponent.

For this problem, we'll treat  as  since anything to the zero power is one.

Since the derivative of any constant is , when we take the indefinite integral, we add a  to compensate for any constant that might be there.

From here we can simplify.

Example Question #46 : Finding Integrals

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we can use the reverse power rule: we raise the exponent by one and then divide by our new exponent.

Remember when taking the indefinite integral to include a  to cover any potential constants.

Simplify.

Example Question #71 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we can use the reverse power rule: we raise the exponent by one and then divide by our new exponent.

We are going to treat  as  since anything to the zero power is one.

Remember when taking the indefinite integral to include a  to cover any potential constants.

Simplify.

Example Question #72 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we use the reverse power rule. That means we raise the exponent on the variables by one and then divide by the new exponent.

Remember to include a  when computing integrals. This is a place holder for any constant that might be in the new expression.

Example Question #51 : Integrals

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we use the reverse power rule. That means we raise the exponent on the variables by one and then divide by the new exponent.

Remember to include a  when doing integrals. This is a placeholder for any constant that might be in the new expression.

Example Question #52 : Integrals

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we can use the reverse power rule. Raise the exponent of the variable by one and then divide by that new exponent.

We're going to treat  as .

Remember to include the  when taking the integral to compensate for any constant.

Simplify.

Example Question #101 : Asymptotic And Unbounded Behavior

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we can use the reverse power rule. We raise the exponent of the variable by one and divide by our new exponent.

Remember to include a  to cover any potential constant that might be in our new equation.

Example Question #71 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

Just like with the derivatives, the indefinite integrals or anti-derivatives of trig functions must be memorized.

Example Question #71 : Calculus Ii — Integrals

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral of our given equation, we can use the reverse power rule: we raise the exponent by one and then divide by that new exponent.

Don't forget to include a to compensate for any constant!

Learning Tools by Varsity Tutors