All High School Math Resources
Example Questions
Example Question #15 : Finding Integrals
?
Remember the fundamental theorem of calculus! If , then .
Since we're given , we need to find the indefinite integral of the equation to get .
To solve for the indefinite integral, we can use the reverse power rule. We raise the power of the exponents by one and divide by that new exponent. For this problem, that would look like:
Remember, when taking an integral, definite or indefinite, we always add , as there could be a constant involved.
Now we can plug that back in:
Notice that the 's cancel out.
Plug in our given numbers.
Example Question #91 : Asymptotic And Unbounded Behavior
?
Remember the fundamental theorem of calculus! If , then .
Since we're given , we need to find the indefinite integral of the equation to get .
To solve for the indefinite integral, we can use the reverse power rule. We raise the power of the exponents by one and divide by that new exponent.
We're going to treat as , as anything to the zero power is one.
For this problem, that would look like:
Remember, when taking an integral, definite or indefinite, we always add , as there could be a constant involved.
Plug that back into the FTOC:
Notice that the 's cancel out.
Plug in our given values from the problem.
Example Question #11 : Integrals
Use the Fundamental Theorem of Calculus: If , then .
Therefore, we need to find the indefinite integral of our equation first.
To do that, we can use the anti-power rule or reverse power rule. We raise the exponent on the variables by one and divide by the new exponent.
For this problem, we'll treat as since anything to the zero power is one.
Since the derivative of any constant is , when we take the indefinite integral, we add a to compensate for any constant that might be there.
From here we can simplify.
That means that .
Notice that the 's cancel out.
From here, plug in our numbers.
Example Question #311 : Ap Calculus Ab
Use the Fundamental Theorem of Calculus: If , then .
Therefore, we need to find the indefinite integral of our equation first.
To do that, we can use the anti-power rule or reverse power rule. We raise the exponent on the variables by one and divide by the new exponent.
For this problem, we'll treat as since anything to the zero power is one.
Since the derivative of any constant is , when we take the indefinite integral, we add a to compensate for any constant that might be there.
From here we can simplify.
According to FTOC:
Notice that the 's cancel out.
Plug in our given information and solve.
Example Question #101 : Functions, Graphs, And Limits
Undefined
Use the Fundamental Theorem of Calculus: If , then .
Therefore, we need to find the indefinite integral of our equation first.
To do that, we can use the anti-power rule or reverse power rule. We raise the exponent on the variables by one and divide by the new exponent.
For this problem, we'll treat as since anything to the zero power is one.
Since the derivative of any constant is , when we take the indefinite integral, we add a to compensate for any constant that might be there.
From here we can simplify.
According to FTOC:
Notice that the 's cancel out.
Plug in our given numbers and solve.
Example Question #79 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change
Undefined
Use the Fundamental Theorem of Calculus. If , then .
Therefore, we need to find the indefinite integral of our equation.
To find the indefinite integral, we can use the reverse power rule: we raise the exponent by one and then divide by our new exponent.
Remember when taking the indefinite integral to include a to cover any potential constants.
Simplify.
Apply the FTOC:
Notice that the 's cancel out.
Plug in our given numbers and solve.
Example Question #2201 : High School Math
Use the Fundamental Theorem ofCcalculus. If , then .
Therefore, we need to find the indefinite integral of our equation.
To find the indefinite integral, we can use the reverse power rule: we raise the exponent by one and then divide by our new exponent.
We are going to treat as since anything to the zero power is one.
Remember when taking the indefinite integral to include a to cover any potential constants.
Simplify.
Plug that into our Fundamental Theorem of Calculus:
Notice that the 's cancel out.
Plug in our given numbers and solve.
Example Question #2202 : High School Math
Use the Fundamental Theorem of Calculus. If , then .
Therefore we need to find the indefinite integral.
To find the indefinite integral, we use the reverse power rule. That means we raise the exponent on the variables by one and then divide by the new exponent.
Remember to include a when computing integrals. This is a place holder for any constant that might be in the new expression.
Now plug that back into the FTOC:
Notice that the 's cancel out.
Plug in our given numbers.
Example Question #2203 : High School Math
Use the Fundamental Theorem of Calculus. If , then .
Therefore we need to find the indefinite integral.
To find the indefinite integral, we use the reverse power rule. That means we raise the exponent on the variables by one and then divide by the new exponent.
Remember to include a when computing integrals. This is a place holder for any constant that might be in the new expression.
Plug that back into FTOC:
Notice that the 's cancel out.
Plug in our given numbers.
Example Question #2204 : High School Math
The Fundamental Theorem of Calculus states that if , then . Therefore, we need to find the indefinite integral of our given equation.
To find the indefinite integral, we can use the reverse power rule. Raise the exponent of the variable by one and then divide by that new exponent.
We're going to treat as .
Remember to include the when taking the integral to compensate for any constant.
Simplify.
Plug that into FTOC:
Notice that the 's cancel out.
Plug in our given numbers.