All High School Math Resources
Example Questions
Example Question #5 : Quadratic Functions
Find the center and radius of the circle defined by the equation:
The equation of a circle is: where is the radius and is the center.
In this problem, the equation is already in the format required to determine center and radius. To find the -coordinate of the center, we must find the value of that makes equal to 0, which is 3. We do the same to find the y-coordinate of the center and find that . To find the radius we take the square root of the constant on the right side of the equation which is 6.
Example Question #6 : Quadratic Functions
Find the center and radius of the circle defined by the equation:
The equation of a circle is: where is the radius and is the center.
In this problem, the equation is already in the format required to determine center and radius. To find the -coordinate of the center, we must find the value of that makes equal to , which is . We do the same to find the y-coordinate of the center and find that . To find the radius we take the square root of the constant on the right side of the equation which is 10.
Example Question #391 : Algebra Ii
It took Jack 25 minutes to travel 14 miles, what was Jack's average speed in mph?
* We have to change the time from minutes to hours, there are 60 minutes in one hour.
Example Question #2 : Polynomial Functions
Let and . Evaluate .
Substitute into , and then substitute the answer into .
Example Question #3 : Understanding Polynomial Functions
Solve the following system of equations:
Infinite solutions.
We will solve this system of equations by Elimination. Multiply both sides of the first equation by 2, to get:
Then add this new equation, to the second original equation, to get:
or
Plugging this value of back into the first original equation, gives:
or
Example Question #1 : Transformations Of Polynomial Functions
List the transformations that have been enacted upon the following equation:
vertical stretch by a factor of 4
horizontal compression by a factor of 6
vertical translation 7 units down
horizontal translation 3 units right
vertical compression by a factor of 4
horizontal stretch by a factor of 6
vertical translation 7 units down
horizontal translation 3 units right
vertical stretch by a factor of 4
horizontal compression by a factor of 6
vertical translation 7 units down
horizontal translation 3 units left
vertical stretch by a factor of 4
horizontal stretch by a factor of 6
vertical translation 7 units down
horizontal translation 3 units right
vertical stretch by a factor of 1/4
horizontal compression by a factor of 1/6
vertical translation 7 units down
horizontal translation 3 units right
vertical stretch by a factor of 4
horizontal compression by a factor of 6
vertical translation 7 units down
horizontal translation 3 units right
Since the equation given in the question is based off of the parent function , we can write the general form for transformations like this:
determines the vertical stretch or compression factor.
- If is greater than 1, the function has been vertically stretched (expanded) by a factor of .
- If is between 0 and 1, the function has been vertically compressed by a factor of .
In this case, is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If is greater than 1, the function has been horizontally compressed by a factor of .
- If is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of .
In this case, is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If is positive, the function was translated units right.
- If is negative, the function was translated units left.
In this case, is 3, so the function was translated 3 units right.
determines the vertical translation.
- If is positive, the function was translated units up.
- If is negative, the function was translated units down.
In this case, is -7, so the function was translated 7 units down.
Example Question #11 : Normal Distribution
Which of the following populations has a precisely normal distribution?
A normal distribution is one in which the values are evenly distributed both above and below the mean. A population has a precisely normal distribution if the mean, mode, and median are all equal. For the population of 3,4,5,5,5,6,7, the mean, mode, and median are all 5.
Example Question #91 : Statistical Patterns And Random Phenomena
If a population has a normal distribution, the number of values within one positive standard deviation of the mean will be . . .
at least 40% of all values in the population
fewer than 20% of all values in the population
fewer than the number of values within one negative standard deviation of the mean
equal to the number of values within two negative standard deviations of the mean
equal to the number of values within one negative standard deviation of the mean
equal to the number of values within one negative standard deviation of the mean
In a normal distribution, the number of values within one positive standard deviation of the mean is equal to the number of values within one negative standard deviation of the mean. The reason for this is that the values below the population mean exactly parallel the values above the mean.
Example Question #1 : How To Find Z Scores For A Data Set
What is the -score for a value of 115 when the mean of the population is 103 and the standard deviation is 8?
A -score indicates whether a particular value is typical for a population or data set. The closer the -score is to 0, the closer the value is to the mean of the population and the more typical it is. The -score is calculated by subtracting the mean of a population from the particular value in question, then dividing the result by the population's standard deviation.
Example Question #1 : How To Find Descriptive Data From A Z Score
A value has a -score of . The value is . . .
the same as the population mean
below the population mean
above the population mean
two standard deviations from the population mean
one standard deviation from the population mean
below the population mean
The -score indicates how close a particular value is to the population mean and whether the value is above or below the mean. A positive -score is always above the mean and a negative -score is always below it. Here, we know the value is below the mean because we have a negative -score.