GRE Subject Test: Math : Integrals

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Integrals

Integrate: 

Possible Answers:

Correct answer:

Explanation:

This problem requires U-Substitution.  Let  and find .

Notice that the numerator in  has common factor of 2, 3, or 6.  The numerator can be factored so that the  term can be a substitute. Factor the numerator using 3 as the common factor.

Substitute  and  terms, integrate, and resubstitute the  term.

Example Question #1 : Integrals

Evaluate the following integral:

Possible Answers:

Correct answer:

Explanation:

To calculate this integral, we could expand that whole binomial, but it would be very time consuming and a bit of a pain. Instead, let's use u substitution:

Given this:

We can say that 

Then, plug it back into our original expression

Evaluate this integral to get

Then, replace u with what we substituted it for to get our final answer. Note because this is an indefinite integral, we need a plus c in it.

 

Example Question #3 : Integrals

Integrate the following using substitution.

Possible Answers:

Correct answer:

Explanation:

Using substitution, we set  which means its derivative is .

Substituting  for , and  for  we have: 

Now we just integrate:

Finally, we remove our substitution  to arrive at an expression with our original variable:

 

Example Question #2 : Integrals

Evaluate the following integral:

Possible Answers:

Correct answer:

Explanation:

To calculate this integral, we could expand that whole binomial, but it would be very time consuming and a bit of a pain. Instead, let's use u substitution:

Given this:

We can say that 

Then, plug it back into our original expression

Evaluate this integral to get

Then, replace u with what we substituted it for to get our final answer. Note because this is an indefinite integral, we need a plus c in it.

Example Question #41 : Derivatives & Integrals

Integrate the following.

Possible Answers:

Correct answer:

Explanation:

Integration by parts follows the formula: 

So, our substitutions will be  and 

which means  and 

Plugging our substitutions into the formula gives us:

           

Since  , we have:

 

, or

Example Question #42 : Derivatives & Integrals

Evaluate the following integral. 

Possible Answers:

Correct answer:

Explanation:

Integration by parts follows the formula:

                              

In this problem we have  so we'll assign our substitutions:

 and 

which means  and 

Including our substitutions into the formula gives us: 

                      

     We can pull out the fraction from the integral in the second part:

Completing the integration gives us:

              

              

Example Question #3 : Integrals

Evaluate the following integral. 

Possible Answers:

Correct answer:

Explanation:

Integration by parts follows the formula: 

                

Our substitutions will be  and  

which means  and .

Plugging our substitutions into the formula gives us: 

              

Look at the integral: we can pull out the  and simplify the remaining  as 

.

We now solve the integral:  , so:

 

Example Question #3 : Integration By Parts

Evaluate the following integral.

Possible Answers:

Correct answer:

Explanation:

Integration by parts follows the formula: 

               .

Our substitutions are  and  

which means  and .

Plugging in our substitutions into the formula gives us

We can pull   outside of the integral.

 

Since , we have

Example Question #1 : Trigonometric Integrals

Integrate the following.

Possible Answers:

Correct answer:

Explanation:

We can integrate the function by using substitution where  so 

Just focus on integrating sine now: 

The last step is to reinsert the substitution:

 

Example Question #2 : Trigonometric Integrals

Integrate the following.

Possible Answers:

Correct answer:

Explanation:

We can integrate using substitution: 

 and  so 

 

Now we can just focus on integrating cosine:

Once the integration is complete, we can reinsert our substitution:

Learning Tools by Varsity Tutors