GRE Math : GRE Quantitative Reasoning

Study concepts, example questions & explanations for GRE Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #791 : Gre Quantitative Reasoning

Quantity A: The number of positive even integers less than 1000

Quantity B: The number of positive odd integers less than 1000

Possible Answers:

Quantity B is greater.

Quantity A is greater.

The relationship cannot be determined from the information given.

The two quantities are equal.

Correct answer:

Quantity B is greater.

Explanation:

The question asks for the number of positive even and odd integers less than 1000. Because 1000 is not included, the numbers to consider are 1 through 999. Every positive odd integer will have a corresponding even integer (1 and 2, 3 and 4, 5 and 6, etc.) until you get to 999. This gives the positive odd integers one more number than the number of positive even integers.

Example Question #2 : How To Find The Number Of Integers Between Two Other Integers

Miles is 3 years older than Ashley. Ashley is 5 years younger than Bill. How old is Ashley if together the three of their ages sum to 44?

Possible Answers:

8

10

14

16

12

Correct answer:

12

Explanation:

Miles is 3 years older than Ashley, so M = A + 3. Also, Bill is 5 years older than Ashley, so B = A + 5.  Together the three of their ages sum to 44, thus:

A + A + 3 + A + 5 = 44

3A + 8 = 44

3A = 36

A = 12

Example Question #1 : How To Find The Number Of Integers Between Two Other Integers

 is a positive integer between 200 and 500

Quantity A: The number of possible values of  with a units digit of 5

Quantity B: 31

Possible Answers:

Quantity B is greater

The information cannot be determined from the information given.

Quantity A is greater

The two quantities are equal

Correct answer:

Quantity B is greater

Explanation:

An integer with a units digit of 5 occurs once every 10 consecutive integers. There are 300 integers between 200 and 500, so there must be 30 values with a units digit of 5.

Example Question #2 : How To Find The Number Of Integers Between Two Other Integers

In a certain game, integers are called magic numbers if they are multiples of either  or .

How many magic numbers are there in the game between  and ?

Possible Answers:

Correct answer:

Explanation:

There are 13 "magic" numbers: 3,4,6,8,9,12, their negative counterparts, and 0.

Example Question #1 : Absolute Value

Quantitative Comparison:

 

Column A

|–3 + 4|

 

Column B

|–3| + |4|

Possible Answers:

Column A is greater

Column A and B are equal

Cannot be determined

Column B is greater

Correct answer:

Column B is greater

Explanation:

The operations in the absolute value are always done first. So in Column A, |–3 + 4| = |1| = 1.  In Column B, |–3| + |4| = 3 + 4 = 7.

Example Question #2 : Absolute Value

Quantitative Comparison

|x – 3| = 3

Quantity A: x

Quantity B: 2

Possible Answers:

The two quantities are equal.

Quantity B is greater.

The relationship cannot be determined from the information given.

Quantity A is greater.

Correct answer:

The relationship cannot be determined from the information given.

Explanation:

It's important to remember that absolute value functions yield two equations, not just one. Here we have x – 3 = 3 AND x – 3 = –3.  

Therefore x = 6 or x = 0, so the answer cannot be determined.  

If we had just used the quation x – 3 = 3 and forgotten about the second equation, we would have had x = 6 as the only solution, giving us the wrong answer.

Example Question #3 : Absolute Value

Quantitative Comparison

Quantity A: |10| – |16|

Quantity B: |1 – 5| – |3 – 6|

Possible Answers:

The relationship cannot be determined from the information given.

Quantity B is greater.

Quantity A is greater.

The two quantities are equal.

Correct answer:

Quantity B is greater.

Explanation:

Quantity A: |10| = 10, |16| = 16, so |10| – |16| = 10 – 16 = –6.

Quantity B: |1 – 5| = 4, |3 – 6| = 3, so |1 – 5| - |3 – 6| = 4 – 3 = 1.

1 is bigger than –6, so Quantity B is greater.

Example Question #2 : How To Find Absolute Value

Quantitative Comparison

Quantity A: (|–4 + 1| + |–10|)2

Quantity B: |(–4 + 1 – 10)2|

Possible Answers:

Quantity B is greater.

The relationship cannot be determined from the information given.

Quantity A is greater.

The two quantities are equal.

Correct answer:

The two quantities are equal.

Explanation:

Quantity A: |–4 + 1| = |–3| = 3 and |–10| = 10, so (|–4 + 1| + |–10|)2 = (3 + 10)2 = 13= 169

Quantity B: |(–4 + 1 – 10)2| = |(–13)2| = 169

The two quantities are equal.

Example Question #141 : Integers

Quantity A:

Quantity B:

Possible Answers:

Quantity A is greater

Quantity B is greater

The two quantities are equal

The relationship cannot be determined from the information given

Correct answer:

Quantity B is greater

Explanation:

If , then either  or  must be negative, but not both. Making them both positive, as in quantity B, and then adding them, would produce a larger number than adding them first and making the result positive.

Example Question #142 : Integers

What is the absolute value of the following equation when

 

Possible Answers:

Correct answer:

Explanation:

(–3)3 = –27. Any time a negative number is cubed, it remains negative. –27 + 5 = –22. The absolute value of any number will ALWAYS be positive so the absolute value of –22 is 22. This is our answer.

 

Tired of practice problems?

Try live online GRE prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors