All GRE Math Resources
Example Questions
Example Question #111 : Arithmetic
Quantity A: The sum of all integers from 49 to 98 inclusive.
Quantity B: The sum of all integers from 51 to 99 inclusive.
Quantity B is greater.
Quantity A is greater.
The relationship cannot be determined from the information given.
The two quantities are equal.
The two quantities are equal.
For each quantity, only count the integers that aren't in the other quantity. Both quantities include the numbers 51 to 98, so those numbers won't affect which is greater. Only Quantity A has 49 and 50 (for a total of 99) and only Quantity B has 99. Since the excluded numbers from both quantities equal 99, you can conclude that the 2 quantities are equal.
Example Question #112 : Arithmetic
What is the sum of all the integers between 1 and 69, inclusive?
The formula here is sum = average value * number of values. Since this is a consecutive series, the average can be found by averaging only the first and last terms: (1 + 69)/2 = 35.
sum = average * number of values = 35 * 69 = 2415
Example Question #113 : Arithmetic
Quantity A: The sum of all integers from 1 to 30
Quantity B: 465
The relationship cannot be determined from the information given.
Quantity B is greater.
Quantity A is greater.
The two quantities are equal.
The two quantities are equal.
The sum of all integers from 1 to 30 can be found using the formula
, where is 30. In this case, the sum equals 465.
Example Question #14 : Sequences
The sum of a set of consecutive odd integers is . What is the fourth number in this set?
We can represent our numbers as:
will have to be an odd number since the whole sequence is odd. However, this will work out when we do the math. Now, we know that all of these added up will be . We have and the sum of the set , the sum of which is .
Thus, we know:
Solve for :
Therefore, the fourth element will be :
Example Question #695 : Gre Quantitative Reasoning
The average of five consecutive integers is . What is the largest of these integers?
There are two ways to figure out this list of integers. On the one hand, you might know that the average of a set of consecutive integers is the "middle value" of that set. So, if the average is and the size , the list must be:
Another way to figure this out is to represent your integers as:
The average of these values will be all of these numbers added together and then divided by . This gives us:
Multiply both sides by :
Finish solving:
This means that the largest value is:
Example Question #11 : Sequences
If the sum of four consecutive numbers is 38, what is the mean of the largest and the smallest of the four numbers?
11.75
10.5
9.5
11
8.75
9.5
The sum of 4 consecutive numbers being 38 can be written as the following equation.
We can simplify this to solve for x.
This tells us that the smallest number is 8 and the largest is (8 + 3) = 11. From this, we can find their mean.
Example Question #114 : Arithmetic
The range of the earnings for architecture graduates is , and the range of the salaries for engineering graduates is .
Which of the following statements individually provide(s) sufficient additional information to determine the range of the salaries of all graduates between the two professions?
A: The median salary for the engineers is greater than that of the architects.
B: The average (arithmetic mean) of the engineers is greater than that of the architects.
C: The lowest salary of the engineers is less than the lowest of the architects.
A only
C only
A and C only
B only
A, B, and C
C only
The provision of the bottom-end of the engineering range is the only additional information that provides us a fixed endpoint from which we can build off of by supplementing with the ranges provided in the question, to give us the full range between both engineering and achitecture graduates. See the diagram provided to understand how this can be done.
Even if the mean and medians were provided, these additional values give us no information on the endpoints of the salaries, and the question only asks for the range.
Example Question #113 : Arithmetic
What's the distance between and on a number line?
Let's draw a number line.
Since a number line is straight and contains the numbers consecutively, we just subtract from to get .
Example Question #114 : Arithmetic
Which of the following answer best fits in the picture below?
Open circles mean the values are excluded from the set.
The number line shows the set is between and exclusive.
The only value in that set would be .
Example Question #114 : Arithmetic
If , then where on the number line lies ?
Because a number line contains both positive and negative integers, we need to consider both possibilities.
is and that value is the same as . Therefore we eliminate the choice because will always be greater than those values raised to the power.
Next is . We elminate both the positive and negative range of . If we look at the difference between and , it's over .
Then, we should guess that will definitely be greater than so therefore answer is .
Remember, a negative value raised to an even power will always have a positive value.