GMAT Math : Geometry

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #801 : Geometry

The point \(\displaystyle (2,d)\) lies on a line with a slope \(\displaystyle m=\frac{1}{2}\) that passes through \(\displaystyle (3,6)\). What is the value of \(\displaystyle d\)?

Possible Answers:

\(\displaystyle \frac{5}{2}\)

\(\displaystyle \frac{7}{2}\)

\(\displaystyle \frac{9}{2}\)

\(\displaystyle \frac{13}{2}\)

\(\displaystyle \frac{11}{2}\)

Correct answer:

\(\displaystyle \frac{11}{2}\)

Explanation:

In order to find the value of \(\displaystyle d\), we first need to find the equation for the line with a slope \(\displaystyle m=\frac{1}{2}\) that passes through \(\displaystyle (3,6)\)

\(\displaystyle y-6=\frac{1}{2}(x-3)\)

\(\displaystyle y-6=\frac{1}{2}x-\frac{3}{2}\)

\(\displaystyle y=\frac{1}{2}x+\frac{9}{2}\)

 

Plugging in \(\displaystyle (2,d)\) and solving for \(\displaystyle d\):

\(\displaystyle d=\frac{1}{2}(2)+\frac{9}{2}\)

\(\displaystyle d=\frac{11}{2}\)

 

 

Example Question #201 : Coordinate Geometry

The point \(\displaystyle (7,a)\) lies on a line with a slope \(\displaystyle m=4\) that passes through \(\displaystyle (1,3)\). What is the value of \(\displaystyle a\)?

Possible Answers:

\(\displaystyle 27\)

\(\displaystyle 32\)

\(\displaystyle 28\)

\(\displaystyle 26\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 27\)

Explanation:

In order to find the value of \(\displaystyle a\), we first need to find the equation for the line with a slope \(\displaystyle m=4\) that passes through \(\displaystyle (1,3)\)

\(\displaystyle y-3=4(x-1)\)

\(\displaystyle y-3=4x-4\)

\(\displaystyle y=4x-1\)

Plugging in \(\displaystyle (7,a)\) and solving for \(\displaystyle a\):

\(\displaystyle a=4(7)-1\)

\(\displaystyle a=28-1\)

\(\displaystyle a=27\)

Example Question #1 : How To Graph A Function

What is the domain of y = 4 - x^{2}\(\displaystyle y = 4 - x^{2}\)?

Possible Answers:

x \leq 4\(\displaystyle x \leq 4\)

x \geq 4\(\displaystyle x \geq 4\)

all real numbers

x \leq 0\(\displaystyle x \leq 0\)

\(\displaystyle x=0\)

Correct answer:

all real numbers

Explanation:

The domain of the function specifies the values that \(\displaystyle x\) can take.  Here, 4-x^{2}\(\displaystyle 4-x^{2}\) is defined for every value of \(\displaystyle x\), so the domain is all real numbers. 

Example Question #121 : Coordinate Geometry

What is the domain of y=-2\sqrt{x}\(\displaystyle y=-2\sqrt{x}\)?

Possible Answers:

\(\displaystyle x>0\)

x\leq 0\(\displaystyle x\leq 0\)

\(\displaystyle x=0\)

x\geq 0\(\displaystyle x\geq 0\)

\(\displaystyle x< -2\)

Correct answer:

x\geq 0\(\displaystyle x\geq 0\)

Explanation:

To find the domain, we need to decide which values \(\displaystyle x\) can take.  The \(\displaystyle x\) is under a square root sign, so \(\displaystyle x\) cannot be negative.  \(\displaystyle x\) can, however, be 0, because we can take the square root of zero.  Therefore the domain is x\geq 0\(\displaystyle x\geq 0\).

Example Question #3 : How To Graph A Function

What is the domain of the function y=\sqrt{4-x^{2}}\(\displaystyle y=\sqrt{4-x^{2}}\)?

Possible Answers:

\(\displaystyle \left ( -2,2 \right )\)

\(\displaystyle x>-2\)

\(\displaystyle \left [ -2,2 \right ]\)

\(\displaystyle x< -2\)

x\leq -2\(\displaystyle x\leq -2\)

Correct answer:

\(\displaystyle \left [ -2,2 \right ]\)

Explanation:

To find the domain, we must find the interval on which \sqrt{4-x^{2}}\(\displaystyle \sqrt{4-x^{2}}\) is defined.  We know that the expression under the radical must be positive or 0, so \sqrt{4-x^{2}}\(\displaystyle \sqrt{4-x^{2}}\) is defined when x^{2}\leq 4\(\displaystyle x^{2}\leq 4\).  This occurs when x \geq -2\(\displaystyle x \geq -2\) and x \leq 2\(\displaystyle x \leq 2\).  In interval notation, the domain is \(\displaystyle \left [ -2,2 \right ]\).

Example Question #801 : Geometry

Define the functions \(\displaystyle f\) and \(\displaystyle g\) as follows:

\(\displaystyle \small \small f (x) = 2x + \sqrt{x - 1}\) 

\(\displaystyle \small g (x) = 6x - \sqrt{x-1}\)

What is the domain of the function \(\displaystyle (f+g)(x)\) ?   

Possible Answers:

\(\displaystyle \small (-\infty ,\infty )\)

\(\displaystyle \small \small [1, \infty )\)

\(\displaystyle \small (1, \infty )\)

\(\displaystyle \small \small (-\infty , -1] \cup [1, \infty )\)

\(\displaystyle \small (-\infty , 1) \cup (1, \infty )\)

Correct answer:

\(\displaystyle \small \small [1, \infty )\)

Explanation:

The domain of \(\displaystyle (f+g)\) is the intersection of the domains of \(\displaystyle f\) and \(\displaystyle g\)\(\displaystyle f\) and \(\displaystyle g\) are each restricted to all values of \(\displaystyle x\) that allow the radicand \(\displaystyle x-1\) to be nonnegative - that is, 

\(\displaystyle \small \small x - 1\geq 0\), or 

\(\displaystyle \small \small \small x \geq 1\)

Since the domains of \(\displaystyle f\) and \(\displaystyle g\) are the same, the domain of \(\displaystyle (f+g)\) is also the same. In interval form the domain of \(\displaystyle (f+g)\) is \(\displaystyle \small \small [1, \infty )\)

Example Question #5 : How To Graph A Function

Define \(\displaystyle g (x) = \frac{1}{\sqrt[3]{x -27}}\)

What is the natural domain of \(\displaystyle g\)?

Possible Answers:

\(\displaystyle (-\infty , - 27)\cup (27, \infty )\)

\(\displaystyle (-\infty , - 3)\cup (3, \infty )\)

\(\displaystyle (3, \infty )\)

\(\displaystyle (-\infty , 27)\cup (27, \infty )\)

\(\displaystyle (27, \infty )\)

Correct answer:

\(\displaystyle (-\infty , 27)\cup (27, \infty )\)

Explanation:

The radical in and of itself does not restrict the domain, since every real number has a real cube root. However, since the expression \(\displaystyle \sqrt[3]{x -27}\) is in a denominator, it cannot be equal to zero, so the domain excludes the value(s) for which 

\(\displaystyle \sqrt[3]{x -27} = 0\)

\(\displaystyle \left (\sqrt[3]{x -27} \right )^{3}= 0^{3}\)

\(\displaystyle x -27 = 0\)

\(\displaystyle x = 27\)

27 is the only number excluded from the domain.

Example Question #6 : How To Graph A Function

Define \(\displaystyle g(x) = \frac{x}{x^{2}+3x-4 }\)

What is the natural domain of \(\displaystyle g\) ?

Possible Answers:

\(\displaystyle ( - \infty ,0) \cup (0, \infty )\)

\(\displaystyle ( - \infty ,-1 ) \cup (-1,0) \cup (0,4) \cup (4, \infty )\)

\(\displaystyle ( - \infty ,-4 ) \cup (-4,0) \cup (0,1) \cup (1, \infty )\)

\(\displaystyle ( - \infty ,-4 ) \cup (-4,1) \cup (1, \infty )\)

\(\displaystyle ( - \infty ,-1 ) \cup (-1,4) \cup (4, \infty )\)

Correct answer:

\(\displaystyle ( - \infty ,-4 ) \cup (-4,1) \cup (1, \infty )\)

Explanation:

Since the expression \(\displaystyle x^{2}+3x-4\) is in a denominator, it cannot be equal to zero, so the domain excludes the value(s) for which \(\displaystyle x^{2}+3x-4 =0\). We solve for \(\displaystyle x\) by factoring the polynomial, which we can do as follows:

\(\displaystyle x^{2}+3x-4 =0\)

\(\displaystyle (x+?)(x+?)=0\)

Replacing the question marks with integers whose product is \(\displaystyle -4\) and whose sum is 3:

\(\displaystyle (x+4)(x-1)=0\)

\(\displaystyle x + 4 = 0 \Rightarrow x = -4\)

\(\displaystyle x -1 = 0 \Rightarrow x = 1\)

Therefore, the domain excludes these two values of \(\displaystyle x\).

Example Question #7 : How To Graph A Function

Define \(\displaystyle f (x) = \frac{1}{x ^{2}- 25 }\).

What is the natural domain of \(\displaystyle f\)?

 

Possible Answers:

\(\displaystyle (-\infty , -5 ) \cup \left ( -5, \infty)\)

\(\displaystyle (-\infty , 5 ) \cup \left ( 5, \infty)\)

\(\displaystyle (-\infty , -5 ) \cup (5, \infty)\)

\(\displaystyle (-\infty , -5 ) \cup \left ( -5,5\right ) \cup (5, \infty)\)

\(\displaystyle (-5 , 5)\)

Correct answer:

\(\displaystyle (-\infty , -5 ) \cup \left ( -5,5\right ) \cup (5, \infty)\)

Explanation:

The only restriction on the domain of \(\displaystyle f\) is that the denominator cannot be 0. We set the denominator to 0 and solve for \(\displaystyle x\) to find the excluded values:

\(\displaystyle x ^{2}-25 =0\)

\(\displaystyle x ^{2}= 25\)

\(\displaystyle x = -5 \textrm{ or }x = 5\)

The domain is the set of all real numbers except those two - that is, 

\(\displaystyle (-\infty , -5 ) \cup \left ( -5,5\right ) \cup (5, \infty)\).

Example Question #1 : Graphing A Logarithm

What is the \(\displaystyle x\)-intercept of the graph of \(\displaystyle y = \log _{2}(x+ 4)\) ?

Possible Answers:

\(\displaystyle (-4,0)\)

\(\displaystyle (1,0)\)

\(\displaystyle (-3,0)\)

The graph has no \(\displaystyle x\)-intercept.

\(\displaystyle (2,0)\)

Correct answer:

\(\displaystyle (-3,0)\)

Explanation:

Set \(\displaystyle y = 0\) and solve:

\(\displaystyle y = \log _{2}(x+ 4)\)

\(\displaystyle \log _{2}(x+ 4) = 0\)

\(\displaystyle 2 ^ {\log _{2}(x+ 4) }= 2 ^ { 0}\)

\(\displaystyle x + 4 = 1\)

\(\displaystyle x + 4 - 4 = 1 - 4\)

\(\displaystyle x = -3\)

The  \(\displaystyle x\)-intercept is \(\displaystyle (-3,0)\).

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors