GMAT Math : Geometry

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #161 : Coordinate Geometry

The vertices of a triangle on the coordinate plane are the vertices and the -intercepts of the graph of the equation

.

What is the area of this triangle?

Possible Answers:

Correct answer:

Explanation:

The vertex of the graph of a quadratic equation  can be found by setting , substituting, and solving for . Setting , this is

Substitute:

The vertex is the point .

The -intercepts can be found by  and solving for :

, in which case , or

, in which case .

The -intercepts are  and .

The triangle with vertices , and  is below:

Triangle 3

If we take the base to be the horizontal segment connecting the -intercepts, then

.

The height is therefore the vertical distance from this segment to the vertex, which is 

The area of the triangle is half their product:

.

 

Example Question #1008 : Problem Solving Questions

A triangle on the coordinate plane has as its vertices the -intercept and -intercepts of the graph of the equation

.

What is the area of this triangle?

Possible Answers:

Correct answer:

Explanation:

The -intercept of the graph of , a parabola, can be found by setting  and solving for :

The -intercept is .

The -intercepts can be found by  and solving for :

, in which case , or

, in which case 

The two -intercepts are  and .

The triangle is shown below:

Triangle 3

If the segment connecting the points on the -axes is taken as the base, then 

The height is therefore the vertical distance from this segment to the point on the -axis, which is 

The area is half their product, or

.

Example Question #61 : Coordinate Geometry

 has as its graph a vertical parabola on the coordinate plane. You are given that , but you are given neither  nor .

Which of the following can you determine without knowing the values of  and  ?

I) Whether the curve opens upward or opens downward

II) The location of the vertex

III) The location of the -intercept

IV) The locations of the -intercepts, if there are any

V) The equation of the line of symmetry

Possible Answers:

II and V only

III only

I only

V only

III and IV only

Correct answer:

I only

Explanation:

I) The orientation of the parabola is determined solely by the value of . Since , the parabola can be determined to open upward.

II and V) The -coordinate of the vertex is ; since you are not given , you cannot find this. Also, since the line of symmetry has equation , for the same reason, you cannot find this either.

III) The -intercept is the point at which ; by substitution, it can be found to be at  is unknown, so the -intercept cannot be found.

IV) The -intercept(s), if any, are the point(s) at which . This is solvable using the quadratic formula

Since all three of  and  must be known for this to be evaluated, and only  is known, the -intercept(s) cannot be identified.

The correct response is I only.

Example Question #771 : Geometry

The parabolas of the functions  and  on the coordinate plane have the same vertex.

If we define , which of the following is a possible equation for  ?

Screen shot 2016 02 10 at 12.25.12 pm

Possible Answers:

None of the other responses gives a correct answer.

Correct answer:

Explanation:

The eqiatopm of  is given in the vertex form

,

so the vertex of its parabola is . The graphs of  and  are parabolas with the same vertex, so they must have the same values for  and 

For the function ,  and .

Screen shot 2016 02 10 at 12.25.12 pm

Of the five choices, the only equation of   that has these same values, and that therefore has a parabola with the same vertex, is .

Screen shot 2016 02 10 at 12.27.19 pm

To verify, graph both functions on the same grid.

Screen shot 2016 02 10 at 12.28.14 pm

Example Question #1 : Graphing A Line

A line has slope . Which of the following could be its - and -intercepts, respectively?

Possible Answers:

 and 

 and 

None of the other responses gives a correct answer.

 and 

 and 

Correct answer:

None of the other responses gives a correct answer.

Explanation:

Let  and  be the - and -intercepts, respectively, of the line. Then the slope of the line is , or, equilvalently, 

We do not need to find the actual slopes of the four choices if we observe that in each case,  and  are of the same sign. Since the quotient of two numbers of the same sign is positive, it follows that  is negative, and therefore, none of the pairs of intercepts can be those of a line with positive slope .

Example Question #2 : Graphing A Line

A line has slope . Which of the following could be its - and -intercepts, respectively?

Possible Answers:

 and 

 and 

 and :

None of the other responses gives a correct answer.

 and 

Correct answer:

 and 

Explanation:

 Let  and  be the - and -intercepts, respectively, of the line. Then the slope of the line is , or, equilvalently, 

 

We can examine the intercepts in each choice to determine which set meets these conditions.

 and :

Slope: 

 

 and 

Slope: 

 

 and 

Slope: 

 

 and 

Slope: 

 

 and  comprise the correct choice.

 

Example Question #3 : Graphing A Line

Line_1

Which of the following equations can be graphed with a line perpendicular to the green line in the above figure, and with the same -intercept?

Possible Answers:

Correct answer:

Explanation:

The slope of the green line can be calculated by noting that the - and -intercepts of the line are, respectively,  and .  If  and  be the - and -intercepts, respectively, of a line, the slope of the line is . This makes the slope of the green line 

Any line perpendicular to this line must have as its slope the opposite reciprocal of this, or . Since the desired line must also have -intercept , the equation of the line, in point=slope form, is

which can be simplified as

Example Question #4 : Graphing A Line

A line passes through the vertex and the -intercept of the parabola of the equation . What is the equation of the line?

Possible Answers:

Correct answer:

Explanation:

To locate the -intercept of the equation , substitute 0 for :

The -intercept of the parabola is .

The vertex of the parabola of an equation of the form  has -coordinate . Here, we substitute , to obtain -coordinate

.

To find the -coordinate, substitute this for :

The vertex is .

The line includes points  and ; apply the slope formula:

The slope is , and the -intercept is ; in the slope-intercept form , substitute for  and . The equation of the line is .

Example Question #5 : Graphing A Line

Give the equation of a line with undefined slope that passes through the vertex of the graph of the equation .

Possible Answers:

Correct answer:

Explanation:

A line with undefined slope is a vertical line, and its equation is  for some , so the -coordinate of all points it passes through is . If it goes through the vertex of a parabola , then the line has the equation . Therefore, all we need to find is the -coordinate of the vertex of the parabola.

The vertex of the parabola of the equation  has as its -coordinate , which, for the parabola of the equation , can be found by setting :

The desired line is .

Example Question #2 : Graphing A Line

A line has slope 4. Which of the following could be its - and -intercepts, respectively?

Possible Answers:

 and 

 and 

None of the other responses gives a correct answer.

 and 

 and 

Correct answer:

 and 

Explanation:

 Let  and  be the - and -intercepts, respectively, of the line. Then the slope of the line is , or, equilvalently, 

 

We can examine the intercepts in each choice to determine which set meets these conditions.

 and 

Slope:  

 

 and 

Slope:  

 

 and 

Slope:  

 

 and 

Slope:  

 

 and  comprise the correct choice, since a line passing through these points has the correct slope.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors