GMAT Math : GMAT Quantitative Reasoning

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Lines

Thingy

In the above figure, give the union of \displaystyle \overrightarrow{GE} and \displaystyle \overrightarrow{OE}.

Possible Answers:

\displaystyle \overrightarrow{OE}

\displaystyle \overrightarrow{GE}

\displaystyle \overline{OE}

\displaystyle \overline{GO}

\displaystyle \overleftrightarrow{GE}

Correct answer:

\displaystyle \overrightarrow{GE}

Explanation:

\displaystyle \overrightarrow{OE} can be seen to be completely contained in \displaystyle \overrightarrow{GE} - that is, \displaystyle \overrightarrow{OE}\subseteq \overrightarrow{GE}. The union of a set and its subset is the containing set, so the correct response is \displaystyle \overrightarrow{GE}.

Example Question #411 : Geometry

Thingy

Give the union of \displaystyle \overrightarrow{NO} and \displaystyle \overrightarrow{XO} in the above figure.

Possible Answers:

\displaystyle \overline{XO}

\displaystyle \overline{NX}

\displaystyle \overrightarrow{NO}

\displaystyle \overleftrightarrow{NX}

\displaystyle \overrightarrow{XO}

Correct answer:

\displaystyle \overleftrightarrow{NX}

Explanation:

The diagram below shows \displaystyle \overrightarrow{NO} and \displaystyle \overrightarrow{XO} in red and green, respectively:

Thingy_x

The union of the two sets is the set of points in one or the other; this set is the entire line containing the two rays, which is \displaystyle \overleftrightarrow{NX}.

Example Question #653 : Problem Solving Questions

Thingy

In the above figure, let \displaystyle M be the midpoint of \displaystyle \overline{EO}. Which of the following would give another name for \displaystyle \overrightarrow{GM}?

Possible Answers:

\displaystyle \overrightarrow{OE}

\displaystyle \overrightarrow{ME}

\displaystyle \overrightarrow{EM}

\displaystyle \overrightarrow{GE}

\displaystyle \overrightarrow{MG}

Correct answer:

\displaystyle \overrightarrow{GE}

Explanation:

Below is the diagram with midpoint \displaystyle M of \displaystyle \overline{EO} added; also, \displaystyle \overrightarrow{GM}, the ray starting at \displaystyle G and passing through \displaystyle M, is in green.

Thingy x

A ray is named after, in order, its endpoint and any other point on the ray.  \displaystyle \overrightarrow{GM} has \displaystyle G as an endpoint, and also includes the points \displaystyle E and \displaystyle O, so there are two valid alternative names, \displaystyle \overrightarrow{GE} and \displaystyle \overrightarrow{GO}, among the choices. The correct response is \displaystyle \overrightarrow{GE}.

Example Question #11 : Understanding Rays

Thingy

In the above diagram, let \displaystyle K and \displaystyle L be the midpoints of \displaystyle \overline{OG} and \displaystyle \overline{OE}, respectively, and \displaystyle R and \displaystyle S be the midpoints of \displaystyle \overline{GK} and \displaystyle \overline{OL}, respectively. Which of the following is not a valid alternative name for \displaystyle \overrightarrow{RS} ?

Possible Answers:

Each of the other choices gives a valid alternative name for \displaystyle \overrightarrow{RS}.

\displaystyle \overrightarrow{RL}

\displaystyle \overrightarrow{RE}

\displaystyle \overrightarrow{RK}

\displaystyle \overrightarrow{RO}

Correct answer:

Each of the other choices gives a valid alternative name for \displaystyle \overrightarrow{RS}.

Explanation:

Below is the diagram with the points \displaystyle K,L,R, and \displaystyle S, as described, shown in green. Also, \displaystyle \overrightarrow{RS}, the ray that has endpoint \displaystyle R and passes through \displaystyle S, is marked in red.

Thingy_x

The ray also passes through \displaystyle E,K,L, and \displaystyle O, so \displaystyle \overrightarrow{RE}\displaystyle \overrightarrow{RK}\displaystyle \overrightarrow{RL}, and \displaystyle \overrightarrow{RO}—all four given names—are also valid names for the ray. 

Example Question #1 : Calculating An Angle Of A Line

What is the measure of an angle complementary to a \displaystyle 72 ^{\circ } angle?

Possible Answers:

\displaystyle 36 ^{\circ }

\displaystyle 72 ^{\circ }

\displaystyle 162 ^{\circ }

\displaystyle 108 ^{\circ }

\displaystyle 18 ^{\circ }

Correct answer:

\displaystyle 18 ^{\circ }

Explanation:

Complementary angles have degree measures that total \displaystyle 90 ^{\circ }, so the measure of an angle complementary to a \displaystyle 72 ^{\circ } angle would have measure \displaystyle (90-72)^{\circ } = 18 ^{\circ }.

Example Question #1 : Calculating An Angle Of A Line

What is the measure of an angle congruent to a \displaystyle 48 ^{\circ } angle?

Possible Answers:

\displaystyle 48 ^{\circ }

\displaystyle 42 ^{\circ }

\displaystyle 24 ^{\circ }

\displaystyle 138^{\circ }

\displaystyle 132 ^{\circ }

Correct answer:

\displaystyle 48 ^{\circ }

Explanation:

Two angles are congruent if they have the same degree measure, so an angle will be congruent to a \displaystyle 48 ^{\circ } angle if its measure is also \displaystyle 48 ^{\circ }.

Example Question #2 : Calculating An Angle Of A Line

What is the measure of an angle supplementary to a \displaystyle 66 ^{\circ } angle?

Possible Answers:

\displaystyle 33 ^{\circ }

\displaystyle 114 ^{\circ }

\displaystyle 24 ^{\circ }

\displaystyle 156 ^{\circ }

\displaystyle 66 ^{\circ }

Correct answer:

\displaystyle 114 ^{\circ }

Explanation:

Supplementary angles have degree measures that total \displaystyle 180 ^{\circ }, so the measure of an angle complementary to a \displaystyle 66 ^{\circ } angle would have measure \displaystyle \left ( 180- 66 \right )^{\circ } = 114^{\circ }.

Example Question #31 : Lines

What is the measure of an angle that is supplementary to a \displaystyle 68^{\circ} angle?

Possible Answers:

\displaystyle 112^{\circ}

\displaystyle 292^{\circ}

\displaystyle 86^{\circ}

\displaystyle 22^{\circ}

\displaystyle 68^{\circ}

Correct answer:

\displaystyle 112^{\circ}

Explanation:

Supplementary angles have degree measures that total \displaystyle 180^{\circ}, so an angle supplementary to \displaystyle 68^{\circ} would measure \displaystyle 180^{\circ}-68^{\circ}=112^{\circ}.

Example Question #2 : Calculating An Angle Of A Line

What is the measure of an angle congruent to a \displaystyle 58^{\circ} angle?

Possible Answers:

\displaystyle 302^{\circ}

\displaystyle 122^{\circ}

\displaystyle 90^{\circ}

\displaystyle 58^{\circ}

\displaystyle 32^{\circ}

Correct answer:

\displaystyle 58^{\circ}

Explanation:

Congruent angles have degree measures that are equal, so an angle congruent to \displaystyle 58^{\circ} is \displaystyle 58^{\circ}

Example Question #422 : Geometry

What is the measure of an angle that is complementary to a \displaystyle 42^{\circ } angle?

Possible Answers:

\displaystyle 90^{\circ }

\displaystyle 24^{\circ }

\displaystyle 48^{\circ }

\displaystyle 318^{\circ }

\displaystyle 138^{\circ }

Correct answer:

\displaystyle 48^{\circ }

Explanation:

Complementary angles have degree measures that total \displaystyle 90^{\circ}, so an angle complementary to \displaystyle 42^{\circ} would measure \displaystyle 90^{\circ}-42^{\circ}=48^{\circ}.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors