GED Math : Algebra

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : Single Variable Algebra

Give the solution set of the inequality:

\displaystyle -7y + 10 > 3y + 12

Possible Answers:

\displaystyle \left ( -\frac{1}{5}, \infty \right )

\displaystyle \left ( -\frac{1}{2}, \infty \right )

\displaystyle \left ( -\infty, -\frac{1}{5} \right )

\displaystyle \left ( -\infty, -\frac{1}{2} \right )

Correct answer:

\displaystyle \left ( -\infty, -\frac{1}{5} \right )

Explanation:

\displaystyle -7y + 10 > 3y + 12

\displaystyle -7y + 10 - 3y > 3y + 12 - 3y

\displaystyle -10y + 10 > 12

\displaystyle -10y + 10 - 10 > 12 - 10

\displaystyle -10y > 2

\displaystyle -10y \div (-10) < 2 \div (-10)

Note that the inequality symbol changes.

\displaystyle y < -\frac{2}{10}

\displaystyle y < -\frac{1}{5}

or, in interval notation, \displaystyle \left ( -\infty, -\frac{1}{5} \right ).

Example Question #61 : Algebra

Solve for \displaystyle y:

\displaystyle -\frac{2}{7} y \geq -4

Possible Answers:

\displaystyle \left [ -14, \infty \right)

\displaystyle \left [ - \frac{8}{7}, \infty \right)

\displaystyle \left ( -\infty , \frac{8}{7}\right ]

\displaystyle \left ( -\infty , 14\right ]

Correct answer:

\displaystyle \left ( -\infty , 14\right ]

Explanation:

\displaystyle -\frac{2}{7} y \geq -4

\displaystyle -\frac{2}{7} y \cdot\left ( -\frac{7} {2} \right ) \leq -4 \cdot\left ( -\frac{7} {2} \right )

Note that the inequality symbol changes.

\displaystyle y\leq \frac{28} {2}

\displaystyle y\leq 14

or, in interval notation, \displaystyle \left ( -\infty , 14\right ].

Example Question #613 : Ged Math

\displaystyle 10 > 7-\frac{x}{4} > 5

Possible Answers:

\displaystyle (-13, 33)

\displaystyle (-12, 8)

\displaystyle (-8, 12)

\displaystyle (-33, 13)

Correct answer:

\displaystyle (-12, 8)

Explanation:

\displaystyle 10 > 7-\frac{x}{4} > 5

\displaystyle 10 - 7 > 7-\frac{x}{4} - 7 > 5 - 7

\displaystyle 3 > -\frac{x}{4} > -2

\displaystyle 3 \cdot (-4) < -\frac{x}{4} \cdot (-4) < -2 \cdot (-4)

Note the switch in the inequality symbol.

\displaystyle -12< x< 8.

This can also be written as \displaystyle (-12, 8).

Example Question #62 : Single Variable Algebra

Which of the following is the solution set of the inequality \displaystyle -13 \leq 8-3x \leq 20 ?

Possible Answers:

\displaystyle \left [ -4, 7\right ]

\displaystyle \left [ 4, 7\right ]

\displaystyle \left [ -7, 4 \right ]

\displaystyle \left [ -7, - 4 \right ]

Correct answer:

\displaystyle \left [ -4, 7\right ]

Explanation:

Solve using the properties of inequality, as follows:

\displaystyle -13 \leq 8-3x \leq 20

\displaystyle -13- 8 \leq 8-3x - 8 \leq 20 - 8

\displaystyle -21 \leq -3x \leq 12

\displaystyle -21 \div (-3) \geq -3x \div (-3) \geq 12 \div (-3) 

Note that division by a negative number reverses the symbols.

\displaystyle 7 \geq x\geq -4

In interval form, this is \displaystyle \left [ -4, 7\right ].

Example Question #14 : Solving For The Variable

If \displaystyle 7x + 6 = 27, then \displaystyle 4x + 12 =

Possible Answers:

\displaystyle 24

\displaystyle 0

\displaystyle 4

\displaystyle 28

Correct answer:

\displaystyle 24

Explanation:

To solve this you must find the value of \displaystyle x.  

The first equation states that \displaystyle 7x + 6 = 27. This is a mult-step equation.  The first step is to remove the constant, 6, from the equation; this is done by using the inverse operation, which means you would subtract the 6 from both sides of the equation.  

\displaystyle 7x + 6 - 6 = 27 -6

\displaystyle 7x = 21

Then divide both sides by the 7 in order to isolate the variable.

\displaystyle \frac{7x}{7} \displaystyle =\frac{21}{7}

\displaystyle x = 3

 

Then plug the 3 into the second equation for the value of x.  

\displaystyle (4 x 3) + 12 = 24

Example Question #15 : Solving For The Variable

If \displaystyle 5(x-5) = 50, what is the value of \displaystyle x?

Possible Answers:

\displaystyle -15

\displaystyle 15

\displaystyle -9

\displaystyle 9

Correct answer:

\displaystyle 15

Explanation:

The first step in the process of solving for \displaystyle x in this problem is to use the distributive property to distribute the \displaystyle 5 to what is inside the parentheses.

 \displaystyle 5x - 25

The next step is to isolate the variable by using inverse operations. In this example, in order to get rid of the \displaystyle -25, you would add \displaystyle 25 to both sides of the equation.

 

\displaystyle 5x - 25 + 25 = 50 + 25

\displaystyle 5x = 75

The next step is to divide both sides by the coefficient, (the number next to the variable), which in this case is \displaystyle 5.    

\displaystyle \frac{5x}{5} = x

\displaystyle \frac{75}{5} = 15

\displaystyle x = 15

Example Question #62 : Algebra

If \displaystyle x + 12 = 30, then what is the value of \displaystyle x?

Possible Answers:

\displaystyle 42

\displaystyle -18

\displaystyle -42

\displaystyle 18

Correct answer:

\displaystyle 18

Explanation:

In order to solve for the value of \displaystyle x you must isolate the variable.  This is done by subtracting the constant in this equation, which is 12, from both sides of the equation.

\displaystyle x + 12 - 12 = 30 - 12

\displaystyle x = 18

Example Question #65 : Algebra

Solve for \displaystyle x:   \displaystyle 2x =-2y+7x

Possible Answers:

\displaystyle x=\frac{2}{5}y

\displaystyle x=-\frac{2}{5}y

\displaystyle x=-\frac{2}{9y}

\displaystyle x=-\frac{2}{5y}

\displaystyle x=-\frac{2}{9}y

Correct answer:

\displaystyle x=\frac{2}{5}y

Explanation:

In order to solve for \displaystyle x, we will need the equation to be in terms of \displaystyle y, and isolate the variable \displaystyle x.

Solve by grouping the \displaystyle x terms together.  Subtract \displaystyle 7x on both sides.

\displaystyle 2x-(7x) =-2y+7x-(7x)

\displaystyle -5x = -2y

Divide by negative five on both sides.

\displaystyle \frac{-5x }{-5}= \frac{-2y}{-5}

The answer is:  \displaystyle x=\frac{2}{5}y

Example Question #66 : Algebra

Solve for \displaystyle x:  \displaystyle 2x+18 = -9(2x)+2x

Possible Answers:

\displaystyle \frac{11}{18}

\displaystyle -1

\displaystyle 0

\displaystyle 1

Correct answer:

\displaystyle -1

Explanation:

Distribute the term on the right side of the equation.

\displaystyle 2x+18 = -18x+2x

Combine like terms.

\displaystyle 2x+18 = -16x

Subtract \displaystyle 2x on both sides.

\displaystyle 2x+18 -2x= -16x-2x

\displaystyle 18 = -18x

Divide by negative \displaystyle 18 on both sides.

\displaystyle \frac{18}{-18} = \frac{-18x}{-18}

The answer is:  \displaystyle x=-1

Example Question #16 : Solving For The Variable

Which of the following makes this equation true:

\displaystyle 12y-3=33

Possible Answers:

\displaystyle y=2

\displaystyle y=3

\displaystyle y=4

\displaystyle y=6

\displaystyle y=7

Correct answer:

\displaystyle y=3

Explanation:

To answer the question, we will solve for y. So, we get

\displaystyle 12y-3=33

 

\displaystyle 12-3+3=33+3

 

\displaystyle 12y-0=36

 

\displaystyle 12y=36

 

\displaystyle \frac{12y}{12} = \frac{36}{12}

 

\displaystyle y = 3

Learning Tools by Varsity Tutors