GED Math : Algebra

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Simplifying, Distributing, And Factoring

Express 286 in base five.

Possible Answers:

\displaystyle 2121_{\textrm{five}}

\displaystyle 2221_{\textrm{five}}

\displaystyle 2101_{\textrm{five}}

\displaystyle 2201_{\textrm{five}}

Correct answer:

\displaystyle 2121_{\textrm{five}}

Explanation:

To convert a base ten number to base five, divide the number by five, with the remainder being the digit in the units place; continue, dividing each successive quotient by five and putting the remainder in the next position to the left until the final quotient is less than five.

\displaystyle 286\div 5 = 57 \textrm{ R }\underline{1} - 1 is the last digit.

\displaystyle 57 \div 5 = 11 \textrm{ R }\underline{2} - 2 is the second-to-last digit.

\displaystyle 11 \div 5 = \underline{2} \textrm{ R }\underline{1} - 1 is the third-to-last digit; 2 is the first digit.

286 is equal to \displaystyle 2121_{\textrm{five}}.

Example Question #12 : Simplifying, Distributing, And Factoring

Simplify the following:  \displaystyle 2x^2 - 3y - 4x^2 + 3y^2 - 3x

Possible Answers:

\displaystyle 2x^2 - 3x - 3y

\displaystyle -5x^2 - 3x

\displaystyle 2x^2 + 3y^2 - 3x + 3y

\displaystyle -2x^2 + 3y^2 - 3x - 3y

\displaystyle -2x^2 - 3y^2 - 3x - 3y

Correct answer:

\displaystyle -2x^2 + 3y^2 - 3x - 3y

Explanation:

Group all like terms by their order:   

\displaystyle 2x^2 - 3y - 4x^2 + 3y^2 - 3x

\displaystyle 2x^2 - 4x^2 + 3y^2 - 3x- 3y

Simplify:

\displaystyle -2x^2 + 3y^2 - 3x - 3y

Example Question #13 : Simplifying, Distributing, And Factoring

Simplify the following:  \displaystyle -(2-x)(6-x)

Possible Answers:

\displaystyle -x^2 +4x-12

\displaystyle -x^2 +8x-12

\displaystyle -x^2 -4x-12

\displaystyle -x^2 +8x+12

\displaystyle -x^2 -8x-12

Correct answer:

\displaystyle -x^2 +8x-12

Explanation:

This can be solved using the FOIL method.  The steps are shown below.

 

\displaystyle -(2-x)(6-x)

\displaystyle -((2)(6) + (2)(-x) + (-x)(6)+(-x)(-x))

\displaystyle -(12-2x-6x+x^2)

\displaystyle -(12-8x+x^2)

\displaystyle -12+8x-x^2

 

Therefore, after reordering, the answer is:  \displaystyle -x^2+8x-12

Example Question #11 : Algebra

Simplify:

\displaystyle \left (2x^{-4} \right )^{-2}

Possible Answers:

\displaystyle \frac{1}{256x^{8}}

\displaystyle \frac{x^{8}}{256}

\displaystyle \frac{x^{8}}{4}

\displaystyle \frac{1}{4x^{8}}

Correct answer:

\displaystyle \frac{x^{8}}{4}

Explanation:

\displaystyle \left (2x^{-4} \right )^{-2}

\displaystyle =\left ( \frac{2}{x^{4}} \right )^{-2}

\displaystyle =\left ( \frac{x^{4}}{2} \right )^{2}

\displaystyle = \frac{\left (x^{4}\right )^{2}}{2^{2}}

\displaystyle = \frac{ x^{4 \cdot 2} }{2^{2}}

\displaystyle = \frac{ x^{8} }{4}

Example Question #15 : Simplifying, Distributing, And Factoring

Factor completely:

\displaystyle 8t^{3} -56t^{2} +3t -21

Possible Answers:

\displaystyle (8t^{2}+7) (t-3)

\displaystyle (8t^{2}-7) (t+3)

\displaystyle (8t^{2}+3) (t-7)

\displaystyle (8t^{2}-3) (t+7)

Correct answer:

\displaystyle (8t^{2}+3) (t-7)

Explanation:

Use the grouping technique, then distribute out the greatest common factor of each group as follows:

\displaystyle 8t^{3} -56t^{2} +3t -21

\displaystyle =\left ( 8t^{3} -56t^{2} \right ) +\left (3t -21 \right )

\displaystyle =\left ( 8t^{2} \cdot t -8t^{2} \cdot 7 \right ) +\left (3 \cdot t -3 \cdot 7\right )

\displaystyle =8t^{2} \left ( t - 7 \right ) + 3\left ( t - 7 \right )

\displaystyle =\left (8t^{2} + 3 \right ) \left ( t - 7 \right )

Example Question #12 : Simplifying, Distributing, And Factoring

Factor completely:

\displaystyle 9t^{2} - 81t

Possible Answers:

\displaystyle 9 \left ( t+3\right )(t-3)

\displaystyle 9 (t-3)^{2}

\displaystyle 9t (t-9)

\displaystyle 9(t-3)(t+27)

Correct answer:

\displaystyle 9t (t-9)

Explanation:

The common factor of the terms \displaystyle 9t^{2} and \displaystyle 81t can be found as follows:

\displaystyle GCF (9,81) = 9, and the lesser of the two powers of \displaystyle t is \displaystyle t; therefore, \displaystyle GCF (9t^{2},81t) = 9t, their product. Distribute this out:

\displaystyle 9t^{2} - 81t

\displaystyle = 9t \cdot t - 9t \cdot 9

\displaystyle = 9t \left (t - 9 \right )

This is as far as we can go with the factoring.

Example Question #12 : Simplifying, Distributing, And Factoring

Factor completely:

\displaystyle 30xt + 15x -22t - 11

Possible Answers:

\displaystyle \left (6x- 11 \right ) \left ( 5t + 1 \right )

\displaystyle \left (15x - 11 \right ) \left ( 2t + 1 \right )

\displaystyle \left (15x + 11 \right ) \left ( 2t -1 \right )

\displaystyle \left (6x+11 \right ) \left ( 5t - 1 \right )

Correct answer:

\displaystyle \left (15x - 11 \right ) \left ( 2t + 1 \right )

Explanation:

Use the grouping technique - group the terms into pairs, then factor out the greatest common factor of each pair.

\displaystyle 30xt + 15x -22t - 11

\displaystyle = \left (30xt + 15x \right ) -\left (22t + 11 \right )

\displaystyle = \left (15x \cdot 2t + 15x \cdot 1 \right ) -\left ( 11 \cdot 2t + 11 \cdot 1 \right )

\displaystyle = 15x \left ( 2t + 1 \right ) - 11 \left ( 2t + 1 \right )

\displaystyle = \left (15x - 11 \right ) \left ( 2t + 1 \right )

Example Question #13 : Simplifying, Distributing, And Factoring

Factor completely:

\displaystyle 2x^{2} + 21x - 50

Possible Answers:

\displaystyle \left (2x+ 25 \right ) \left (x-2 \right )

\displaystyle \left (2x- 1\right ) \left (x+25 \right )

\displaystyle 2 \left (x+5 \right ) \left (x-5 \right )

\displaystyle \left (2x+ 5\right ) \left (x-2 \right )

Correct answer:

\displaystyle \left (2x+ 25 \right ) \left (x-2 \right )

Explanation:

A polynomial of the form \displaystyle Ax^{2} + Bx + C can be factored by first splitting the term into two terms whose coefficients add up to \displaystyle B and have product \displaystyle AC, then factoring out by the grouping technique.

We are looking for two integers whose sum is \displaystyle B = 21 and whose product is \displaystyle AC = 2 (-50) = -100. Through some trial and error, we can see that the integers are \displaystyle \left \{ 25, -4 \right \}, so:

\displaystyle 2x^{2} + 21x - 50

\displaystyle =2x^{2} - 4x + 25x - 50

\displaystyle =\left (2x^{2} - 4x \right )+\left ( 25x - 50 \right )

\displaystyle =\left (2x \cdot x - 2x \cdot 2 \right )+\left ( 25 \cdot x - 25 \cdot 2 \right )

\displaystyle = 2x \left (x-2 \right )+ 25 \left (x-2 \right )

\displaystyle = \left (2x+ 25 \right ) \left (x-2 \right )

Example Question #12 : Single Variable Algebra

Factor completely:

\displaystyle 4x ^{3}y - 100xy

Possible Answers:

\displaystyle 4x y \left ( x + 5 \right ) \left ( x - 5 \right )

\displaystyle 2x y \left ( 2x + 5 \right ) \left ( x - 10 \right )

\displaystyle 2x y \left ( 2x - 5 \right ) \left ( x + 10 \right )

\displaystyle 4x y \left ( x - 5 \right )^{2}

Correct answer:

\displaystyle 4x y \left ( x + 5 \right ) \left ( x - 5 \right )

Explanation:

First, factor out the greatest common factor of the terms, which is \displaystyle 4x y:

\displaystyle 4x ^{3}y - 100xy

\displaystyle = 4x y \cdot x^{2} - 4x y \cdot 25

\displaystyle = 4x y \left ( x^{2} - 25 \right )

\displaystyle x^{2} - 25 is the difference of squares, so we can factor further:

\displaystyle 4x y \left ( x^{2} - 25 \right )

\displaystyle = 4x y \left ( x^{2} - 5 ^{2}\right )

\displaystyle 4x y \left ( x + 5 \right ) \left ( x - 5 \right )

Example Question #12 : Algebra

Simplify:

\displaystyle 7 (2x + 8)- 5 (7x - 3)

Possible Answers:

\displaystyle -21x+ 41

\displaystyle -49x+ 71

\displaystyle -49x+ 41

\displaystyle -21x+ 71

Correct answer:

\displaystyle -21x+ 71

Explanation:

\displaystyle 7 (2x + 8)- 5 (7x - 3)

\displaystyle = 7 \cdot 2x +7 \cdot 8- 5 \cdot 7x + 5 \cdot 3

\displaystyle = 14x +56- 35x + 15

\displaystyle = 14x- 35x +56+ 15

\displaystyle = \left (14 - 35 \right )x +\left (56+ 15 \right )

\displaystyle = -21x+ 71

Learning Tools by Varsity Tutors