GED Math : Algebra

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Solving For The Variable

Solve for .

Possible Answers:

Correct answer:

Explanation:

Start by adding  to both sides.

Next, square both sides to get rid of the square root.

Finally, subtract  from both sides.

Example Question #671 : Ged Math

Solve for

Possible Answers:

None of these answers

Correct answer:

Explanation:

To solve for , all you have to do is simplify your equation until you get a number on one side and your  on the other.

So for starters we already have all of our numbers on one side: . Now all we need to do is add and subtract when called for in order to get our answer.

Start by adding  to 

Now subtract  from our newly formed 

Your answer is 

Example Question #122 : Algebra

Solve for

Possible Answers:

None of the other answers

Correct answer:

Explanation:

In order to solve for , all you have to do is simplify your equation so that your  is on one side and your number is on the other.

For this equation, we have one number accompanying our . That is : .

Let's move that  over to the other side by adding it on both sides.

Now that all of our numbers are on one side, it's time to simplify. Multiplication comes before addition, so we need to multiply the  and  together before we touch the .

Now we can add the  to .

Our answer is 

Example Question #123 : Algebra

Solve for

Possible Answers:

None of the other answers

Correct answer:

Explanation:

In order to solve for , we must simplify our equation so that we have  on one side and our final number on the other side. 

Before we can do any simplifying, we must get  by itself. Currently our  is being added by , but it's also being divided by . We can't touch the  yet, so let's move the  by multiplying both sides.

Now let's move that  on the  side by subtracting it on both sides.

Now that we have all our numbers to one side, it's time to start simplifying. Multiplication comes before subtraction, so we're going to multiply our  and  together.

Now we can subtract our  from .

Our answer is 

Example Question #71 : Solving For The Variable

Evaluate .

Possible Answers:

Correct answer:

Explanation:

Solve this equation for  by isolating the  on the left side of the equation. This can be done by first, subtracting  from both sides:

Collect like terms by subtracting coefficients of :

Add 17 to both sides:

Divide both sides by 3:

,

the correct choice.

Example Question #126 : Single Variable Algebra

Evaluate .

Possible Answers:

Correct answer:

Explanation:

Solve this equation for  by isolating the  on the left side of the equation. This can be done by first,multiplying 5 by each expression within the parentheses:

Subtract from both sides:

Collect like terms by subtracting coefficients of :

Subtract 15 from both sides:

Divide both sides by 3:

,

the correct response.

Example Question #73 : Solving For The Variable

Solve for .

Possible Answers:

Correct answer:

Explanation:

Start by subtracting both sides by .

Square both sides of the equation to get rid of the square root.

Add  to both sides.

Divide both sides of the equation by .

Example Question #74 : Solving For The Variable

What is the value of  in the equation ?

Possible Answers:

Correct answer:

Explanation:

Start by adding  to both sides.

Square both sides of the equation to get rid of the square root.

Subtract  from both sides.

Divide both sides by .

Example Question #121 : Algebra

Rearrange the following equation so that it is solved for "b"

Possible Answers:

Correct answer:

Explanation:

Rearrange the following equation so that it is solved for "b"

This problem may look intimidating, but don't be overwhelmed! Read the problem carefully, all we need to do is get the b all by itself.

To do this, let's first multiply both sides by 4x.

Next, we simply need to divide both sides by 3 to get the b all by itself.

One last thing, we can simplify the denominator and get rid of our three by dividing a three out of the 12 and the 6.

This yields:

Example Question #76 : Solving For The Variable

Solve for x

Possible Answers:

Correct answer:

Explanation:

Starting with

We must get rid of the fraction by multiplying both sides by (2x-1)

The terms cancel on the right, and we must distribute on the left

Simplify 

Subtract x from both sides to get the variables all on one side

combine like terms

Now add 3 to both sides to get the term with the variable by itself

Simplify

And finally, divide both side by 5 to get the variable all by itself

Learning Tools by Varsity Tutors