Common Core: Kindergarten Math : Place Value: CCSS.Math.Content.K.NBT.A.1

Study concepts, example questions & explanations for Common Core: Kindergarten Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =11\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 3\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 10\end{array}}{ \ \ \ \ \ \space 1}\)

We can start at \(\displaystyle 11\) and count back \(\displaystyle 10\).

\(\displaystyle 11,10,9,8,7,6,5,4,3,2,1\)

Example Question #2 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =12\)

 

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}12\\ -\ 10\end{array}}{ \ \ \ \ \ \space 2}\)

We can start at \(\displaystyle 12\) and count back \(\displaystyle 10\).

\(\displaystyle 12,11,10,9,8,7,6,5,4,3,2\)

Example Question #3 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =13\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 4\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}13\\ -\ 10\end{array}}{ \ \ \ \ \ \space 3}\)

We can start at \(\displaystyle 13\) and count back \(\displaystyle 10\).

\(\displaystyle 13,12,11,10,9,8,7,6,5,4,3\)

Example Question #4 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =14\)

 

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 3\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 4\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}14\\ -\ 10\end{array}}{ \ \ \ \ \ \space 4}\)

We can start at \(\displaystyle 14\) and count back \(\displaystyle 10\).

\(\displaystyle 14,13,12,11,10,9,8,7,6,5,4\)

Example Question #1 : Place Value: Ccss.Math.Content.K.Nbt.A.1

\(\displaystyle 10+\) _________\(\displaystyle =15\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 5\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}15\\ -\ 10\end{array}}{ \ \ \ \ \ \space 5}\)

We can start at \(\displaystyle 15\) and count back \(\displaystyle 10\).

\(\displaystyle 15,14,13,12,11,10,9,8,7,6,5\)

Example Question #6 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =16\)

 

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 7\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 6\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 10\end{array}}{ \ \ \ \ \ \space 6}\)

We can start at \(\displaystyle 16\) and count back \(\displaystyle 10\).

\(\displaystyle 16,15,14,13,12,11,10,9,8,7,6\)

Example Question #7 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =17\)

 

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 5\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 7\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 10\end{array}}{ \ \ \ \ \ \space 7}\)

We can start at \(\displaystyle 17\) and count back \(\displaystyle 10\).

\(\displaystyle 17,16,15,14,13,12,11,10,9,8,7\)

Example Question #8 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =18\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 8\)

\(\displaystyle 9\)

Correct answer:

\(\displaystyle 8\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}18\\ -\ 10\end{array}}{ \ \ \ \ \ \space 8}\)

We can start at \(\displaystyle 18\) and count back \(\displaystyle 10\).

\(\displaystyle 18,17,16,15,14,13,12,11,10,9,8\)

Example Question #9 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =19\)

 

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 8\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 9\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 10\end{array}}{ \ \ \ \ \ \space 9}\)

We can start at \(\displaystyle 19\) and count back \(\displaystyle 10\).

\(\displaystyle 19,18,17,16,15,14,13,12,11,10,9\)

Example Question #10 : Number & Operations In Base Ten

\(\displaystyle 10+\) _________\(\displaystyle =11\)

 

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To find the missing piece of an addition problem, we can take the biggest number minus the smallest number. 

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 10\end{array}}{ \ \ \ \ \ \space 1}\)

We can start at \(\displaystyle 11\) and count back \(\displaystyle 10\).

\(\displaystyle 11,10,9,8,7,6,5,4,3,2,1\)

Learning Tools by Varsity Tutors