Common Core: High School - Number and Quantity : Vector & Matrix Quantities

Study concepts, example questions & explanations for Common Core: High School - Number and Quantity

varsity tutors app store varsity tutors android store

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< -3,4>\), and \(\displaystyle w=< 2,3>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle v-w=< -5,-1>\)

\(\displaystyle v-w=< 1,-5>\)

\(\displaystyle v-w=< 5,-1>\)

\(\displaystyle v-w=< 5,1>\)

\(\displaystyle v-w=< -5,1>\)

Correct answer:

\(\displaystyle v-w=< -5,1>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=-3\)

\(\displaystyle (x\:\mbox{component in}\: w)=2\)

\(\displaystyle (y\: \mbox{component in}\: v)=4\)

\(\displaystyle (y\: \mbox{component in}\: w)=3\)

\(\displaystyle x=-3-2=-5\)

\(\displaystyle y=4-3=1\)

So our final answer is \(\displaystyle < -5,1>\).

Below is a visual representation.

 

 

Vecsub

 

Example Question #2 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< 4,-2>\), and \(\displaystyle w=< 4,3>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle v-w=< 0,5>\)

\(\displaystyle v-w=< 0,-5>\)

\(\displaystyle v-w=< -5,0>\)

\(\displaystyle v-w=< 5,0>\)

\(\displaystyle v-w=< 8,1>\)

Correct answer:

\(\displaystyle v-w=< 0,-5>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=4\)

\(\displaystyle (x\:\mbox{component in}\: w)=4\)

\(\displaystyle (y\: \mbox{component in}\: v)=-2\)

\(\displaystyle (y\: \mbox{component in}\: w)=3\)

\(\displaystyle x=4-4=0\)

\(\displaystyle y=-2-3=-5\)

So our final answer is \(\displaystyle < 0,-5>\).

Below is a visual representation.

 

Screen shot 2016 03 08 at 9.31.39 am

Example Question #3 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< -10,5>\), and \(\displaystyle w=< -6,-7>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle v-w=< 12,4>\)

\(\displaystyle v-w=< -4,12>\)

\(\displaystyle v-w=< -16,2>\)

\(\displaystyle v-w=< 12,-4>\)

\(\displaystyle v-w=< 4,12>\)

Correct answer:

\(\displaystyle v-w=< -4,12>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=-10\)

\(\displaystyle (x\:\mbox{component in}\: w)=-6\)

\(\displaystyle (y\: \mbox{component in}\: v)=5\)

\(\displaystyle (y\: \mbox{component in}\: w)=-7\)

\(\displaystyle x=-10-(-6)=-10+6=-4\)

\(\displaystyle y=5-(-7)=5+7=12\)

So our final answer is \(\displaystyle < -4,12>\).

Below is a visual representation.

 

Screen shot 2016 03 08 at 9.52.05 am

Example Question #4 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< 1,1>\), and \(\displaystyle w=< -7,-9>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle v-w=< 8,-10>\)

\(\displaystyle v-w=< 8,10>\)

\(\displaystyle v-w=< 10,8>\)

\(\displaystyle v-w=< -8,10>\)

\(\displaystyle v-w=< -10,-8>\)

Correct answer:

\(\displaystyle v-w=< 8,10>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=1\)

\(\displaystyle (x\:\mbox{component in}\: w)=-7\)

\(\displaystyle (y\: \mbox{component in}\: v)=1\)

\(\displaystyle (y\: \mbox{component in}\: w)=-9\)

\(\displaystyle x=1-(-7)=1+7=8\)

\(\displaystyle y=1-(-9)=1+9=10\)

So our final answer is \(\displaystyle < 8,10>\).

Below is a visual representation.

Screen shot 2016 03 08 at 10.22.33 am

Example Question #5 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< -2,-2>\), and \(\displaystyle w=< -1,-4>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle < -2,-1>\)

\(\displaystyle < 2,1>\)

\(\displaystyle < -1,2>\)

\(\displaystyle < 1,-2>\)

\(\displaystyle < -6,-1>\)

Correct answer:

\(\displaystyle < -1,2>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=-2\)

\(\displaystyle (x\:\mbox{component in}\: w)=-1\)

\(\displaystyle (y\: \mbox{component in}\: v)=-2\)

\(\displaystyle (y\: \mbox{component in}\: w)=-4\)

\(\displaystyle x=-2-(-1)=-2+1=-1\)

\(\displaystyle y=-2-(-4)=-2+4=2\)

So our final answer is \(\displaystyle < -1,2>\).

Below is a visual representation.


Screen shot 2016 03 10 at 12.55.41 pm

Example Question #6 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< -10,-1>\), and \(\displaystyle w=< -9,-7>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle < -1,6>\)

\(\displaystyle < 6, -1>\)

\(\displaystyle < -1,-6>\)

\(\displaystyle < 1,6>\)

\(\displaystyle < 1,-6>\)

Correct answer:

\(\displaystyle < -1,6>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=-10\)

\(\displaystyle (x\:\mbox{component in}\: w)=-9\)

\(\displaystyle (y\: \mbox{component in}\: v)=-1\)

\(\displaystyle (y\: \mbox{component in}\: w)=-7\)

\(\displaystyle x=-10-(-9)=-10+9=-1\)

\(\displaystyle y=-1-(-7)=-1+7=6\)

So our final answer is \(\displaystyle < -1,6>\).

Below is a visual representation.

Screen shot 2016 03 10 at 1.03.06 pm

Example Question #1 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< -9,-9>\), and \(\displaystyle w=< -4,11>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle < -5,-20>\)

\(\displaystyle < -13,-20>\)

\(\displaystyle < 13,-20>\)

\(\displaystyle < 5,-20>\)

\(\displaystyle < 13,20>\)

Correct answer:

\(\displaystyle < -5,-20>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=-9\)

\(\displaystyle (x\:\mbox{component in}\: w)=-4\)

\(\displaystyle (y\: \mbox{component in}\: v)=-9\)

\(\displaystyle (y\: \mbox{component in}\: w)=11\)

\(\displaystyle x=-9-(-4)=-9+4=-5\)

\(\displaystyle y=-9-11=-20\)

So our final answer is \(\displaystyle < -5,-20>\).

Below is a visual representation.

Screen shot 2016 03 10 at 1.09.46 pm

Example Question #8 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< -8,-10>\), and \(\displaystyle w=< 4,14>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle < 24,-12>\)

\(\displaystyle < -12,-24>\)

\(\displaystyle < -12,24>\)

\(\displaystyle < -24,-12>\)

\(\displaystyle < -24,12>\)

Correct answer:

\(\displaystyle < -12,-24>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=-8\)

\(\displaystyle (x\:\mbox{component in}\: w)=4\)

\(\displaystyle (y\: \mbox{component in}\: v)=-10\)

\(\displaystyle (y\: \mbox{component in}\: w)=14\)

\(\displaystyle x=-8-4=-12\)

\(\displaystyle y=-10-14=-24\)

So our final answer is \(\displaystyle < -12,-24>\).

Below is a visual representation.

Screen shot 2016 03 10 at 1.16.09 pm

Example Question #1 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< -15,1>\), and \(\displaystyle w=< -2,3>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle < -13,3>\)

\(\displaystyle < 13,-2>\)

\(\displaystyle < -1,-2>\)

\(\displaystyle < -13,-2>\)

\(\displaystyle < -17,3>\)

Correct answer:

\(\displaystyle < -13,-2>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=-15\)

\(\displaystyle (x\:\mbox{component in}\: w)=-2\)

\(\displaystyle (y\: \mbox{component in}\: v)=1\)

\(\displaystyle (y\: \mbox{component in}\: w)=3\)

\(\displaystyle x=-15-(-2)=-15+2=-13\)

\(\displaystyle y=1-3=-2\)

So our final answer is \(\displaystyle < -13,-2>\).

Below is a visual representation.

Screen shot 2016 03 10 at 1.25.04 pm

Example Question #2 : Vector Subtraction As The Additive Inverse: Ccss.Math.Content.Hsn Vm.B.4c

If \(\displaystyle v=< 3,4>\), and \(\displaystyle w=< -3,-12>\), what is \(\displaystyle v-w\)?

Possible Answers:

\(\displaystyle < 0,8>\)

\(\displaystyle < 6,16>\)

\(\displaystyle < 16,6>\)

\(\displaystyle < 0,-8>\)

\(\displaystyle < 6,-16>\)

Correct answer:

\(\displaystyle < 6,16>\)

Explanation:

In order to solve this problem, we need to know how to subtract vectors. It is simply subtracting the x components and the y components. 

\(\displaystyle x=(x\: \mbox{component in}\: v) -(x\:\mbox{component in}\: w )\)

\(\displaystyle y=(y\: \mbox{component in}\: v) -(y\:\mbox{component in}\: w )\)

\(\displaystyle (x\: \mbox{component in}\: v)=3\)

\(\displaystyle (x\:\mbox{component in}\: w)=-3\)

\(\displaystyle (y\: \mbox{component in}\: v)=4\)

\(\displaystyle (y\: \mbox{component in}\: w)=-12\)

\(\displaystyle x=3-(-3)=3+3=6\)

\(\displaystyle y=4-(-12)=4+12=16\)

So our final answer is \(\displaystyle < 6,16>\).

Below is a visual representation.

Screen shot 2016 03 10 at 1.38.47 pm

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors