Common Core: 7th Grade Math : Ratios & Proportional Relationships

Study concepts, example questions & explanations for Common Core: 7th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #121 : Grade 7

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=33x

 

Possible Answers:

\displaystyle 33

\displaystyle 0.33

\displaystyle 3.3

\displaystyle x

\displaystyle 3

Correct answer:

\displaystyle 33

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=33x

In this example, \displaystyle 33 is in the place of \displaystyle k; therefore, \displaystyle 33 is the constant of proportionality. 

Example Question #3 : Identify The Constant Of Prportionality: Ccss.Math.Content.7.Rp.A.2b

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=39x

 

Possible Answers:

\displaystyle 3

\displaystyle 39

\displaystyle x

\displaystyle \frac{1}{39}

\displaystyle 9

Correct answer:

\displaystyle 39

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=39x

In this example, \displaystyle 39 is in the place of \displaystyle k; therefore, \displaystyle 39 is the constant of proportionality. 

Example Question #123 : Grade 7

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=\frac{1}{25}x

 

Possible Answers:

\displaystyle \frac{1}{25}

\displaystyle 2

\displaystyle 5

\displaystyle \frac{1}{5}

\displaystyle x

Correct answer:

\displaystyle \frac{1}{25}

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=\frac{1}{25}x

In this example, \displaystyle \frac{1}{25} is in the place of \displaystyle k; therefore, \displaystyle \frac{1}{25} is the constant of proportionality. 

Example Question #124 : Grade 7

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=\frac{1}{99}x

 

Possible Answers:

\displaystyle 3.3

\displaystyle \frac{1}{99}

\displaystyle x

\displaystyle 9.9

\displaystyle 99

Correct answer:

\displaystyle \frac{1}{99}

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=\frac{1}{99}x

In this example, \displaystyle \frac{1}{99} is in the place of \displaystyle k; therefore, \displaystyle \frac{1}{99} is the constant of proportionality. 

Example Question #11 : Identify The Constant Of Prportionality: Ccss.Math.Content.7.Rp.A.2b

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=4x

Possible Answers:

\displaystyle 4

\displaystyle x

\displaystyle \frac{1}{4}

\displaystyle 2

\displaystyle y

Correct answer:

\displaystyle 4

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=4x

In this example, \displaystyle 4 is in the place of \displaystyle k; therefore, \displaystyle 4 is the constant of proportionality. 

Example Question #12 : Identify The Constant Of Prportionality: Ccss.Math.Content.7.Rp.A.2b

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=\frac{1}{2}x

Possible Answers:

\displaystyle x

\displaystyle 2

\displaystyle 5

\displaystyle \frac{1}{2}

\displaystyle \frac{2}{1}

Correct answer:

\displaystyle \frac{1}{2}

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=\frac{1}{2}x

In this example, \displaystyle \frac{1}{2} is in the place of \displaystyle k; therefore, \displaystyle \frac{1}{2} is the constant of proportionality. 

Example Question #13 : Identify The Constant Of Prportionality: Ccss.Math.Content.7.Rp.A.2b

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=6x

 

Possible Answers:

\displaystyle \frac{1}{6}

\displaystyle \frac{3}{2}

\displaystyle 3

\displaystyle 6

\displaystyle x

Correct answer:

\displaystyle 6

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=6x

In this example, \displaystyle 6 is in the place of \displaystyle k; therefore, \displaystyle 6 is the constant of proportionality. 

Example Question #14 : Identify The Constant Of Prportionality: Ccss.Math.Content.7.Rp.A.2b

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=\frac{1}{4}x

 

Possible Answers:

\displaystyle x

\displaystyle \frac{4}{1}

\displaystyle 4

\displaystyle \frac{1}{4}

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle \frac{1}{4}

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=\frac{1}{4}x

In this example, \displaystyle \frac{1}{4} is in the place of \displaystyle k; therefore, \displaystyle \frac{1}{4} is the constant of proportionality. 

Example Question #15 : Identify The Constant Of Prportionality: Ccss.Math.Content.7.Rp.A.2b

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=2x

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle 2

\displaystyle 0.2

\displaystyle x

\displaystyle 1

Correct answer:

\displaystyle 2

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=2x

In this example, \displaystyle 2 is in the place of \displaystyle k; therefore, \displaystyle 2 is the constant of proportionality. 

Example Question #11 : Identify The Constant Of Prportionality: Ccss.Math.Content.7.Rp.A.2b

In the equation provided, identify the constant of proportionality (i.e. the unit rate).

\displaystyle y=\frac{1}{6}x

 

Possible Answers:

\displaystyle x

\displaystyle 0.6

\displaystyle 6

\displaystyle \frac{1}{6}

\displaystyle \frac{2}{6}

Correct answer:

\displaystyle \frac{1}{6}

Explanation:

The constant of proportionality can be identified using the following general equation:

\displaystyle y=kx

In this equation, the variable, \displaystyle k, represents the constant of proportionality. 

Let's look at the given equation:

\displaystyle y=\frac{1}{6}x

In this example, \displaystyle \frac{1}{6} is in the place of \displaystyle k; therefore, \displaystyle \frac{1}{6} is the constant of proportionality. 

Learning Tools by Varsity Tutors