All Common Core: 6th Grade Math Resources
Example Questions
Example Question #1 : Median
Subtract the mode from the median in this set of numbers:
9080, 9008, 9800, 9099, 9009, 9090, 9008
First, order the numbers from least to greatest:
Then, find the mode (the most recurring number): 9008
Then, find the median (the middle number):
Finally, subtract the mode from the median:
Answer: 72.
Example Question #122 : Data Analysis
Consider the data set:
What is the difference between the mean of this set and the median of this set?
To get the mean, add the numbers and divide by 8:
To get the median, find the mean of the fourth- and fifth-highest elements (the ones in the middle):
The difference is
Example Question #1501 : Grade 6
The difference between 2996 and 4515 is closest to
Round 2996 up to 3000 and 4515 down to 4500. The difference between 4500 and 3000 is 1500.
Example Question #1 : Understand The Shape Of A Data Set: Ccss.Math.Content.6.Sp.B.5d
Which of the following is the best measure of center for the data set in the provided table?
Median
Mode
Either mode or median
Either mode or mean
Either mode or median
In order to answer this question correctly, we need to solve for the mean, median, and mode of this data set.
To begin, let's sort the data from least to greatest:
Now that our data is ordered from least to greatest, we can solve for the median:
Remember, the median is the middle most number when a data set is ordered from least to greatest.
The median for this data set is
Next, we can look at our data set to determine the mode:
The mode for this data set is
Remember, the mode is the number in a set that appears most often.
Finally, we can solve for the mean:
Remember, the mean of a data set is the average of the numbers in a data set.
The mean for this data set is
Now that we've done our calculation we should have:
Median:
Mode:
Mean:
We are looking for the value that is representative of the center of the data; thus the mode or median would be the best measurement to use.
Example Question #2 : Understand The Shape Of A Data Set: Ccss.Math.Content.6.Sp.B.5d
Which of the following is the best measure of variability for the data in the provided table?
Range
Interquartile range
Neither range nor interquartile range
Either range or interquartile range
Interquartile range
In order to answer this question correctly, we need to solve for the range and the interquartile range.
To begin, let's sort the data from least to greatest:
Next, we can solve for the range. Remember, the range of a data set is the difference between the highest value and the lowest value in the set.
The range for this data set is
Now, we can solve for the interquartile range. Remember, the interquartile range is the difference between the upper quartile median and the lower quartile median. This means that we need to first calculate these two values. In order to do this, we need to split the data set into quartiles.
First, we will find the median:
We will then use the median to split the data in half. Next, we must find the median of the first half—or lower quartile—and then the median of the second half—or upper quartile:
Now we can solve for the difference between the upper quartile median and the lower quartile median:
Now that we have completed these operations, we should have calculated the following values:
Range:
Interquartile range:
As you can see, solving for the interquartile range requires more steps because it takes into account more of the data points; thus, given our options, interquartile range is best to use when solving for variability.
Example Question #2 : Understand The Shape Of A Data Set: Ccss.Math.Content.6.Sp.B.5d
Which of the following is the best measure of center for the data set in the provided table?
Mode
Mean
Either mean or median
Median
Mean
In order to answer this question correctly, we need to solve for the mean, median, and mode of this data set.
To begin, let's sort the data from least to greatest:
Now that our data is ordered from least to greatest, we can solve for the median:
Remember, the median is the middle most number when a data set is ordered from least to greatest.
The median for this data set is
Next, we can look at our data set to determine the mode:
The mode for this data set is
Remember, the mode is the number in a set that appears most often.
Finally, we can solve for the mean:
Remember, the mean of a data set is the average of the numbers in a data set.
The mean for this data set is
Now that we've done our calculation we should have:
Median:
Mode:
Mean:
We are looking for the value that is representative of the center of the data; thus the mean would be the best measure because and represent the greatest values of our data set, but is more reflective of the center of all of the values. Normally, when a data set is varied the mean is normally the best measure of center.
Example Question #3 : Understand The Shape Of A Data Set: Ccss.Math.Content.6.Sp.B.5d
Which of the following is the best measure of variability for the data in the provided table?
Neither range nor interquartile range
Interquartile range
Range
Either range or interquartile range
Interquartile range
In order to answer this question correctly, we need to solve for the range and the interquartile range.
To begin, let's sort the data from least to greatest:
Next, we can solve for the range. Remember, the range of a data set is the difference between the highest value and the lowest value in the set.
The range for this data set is
Now, we can solve for the interquartile range. Remember, the interquartile range is the difference between the upper quartile median and the lower quartile median. This means that we need to first calculate these two values. In order to do this, we need to split the data set into quartiles.
First, we will find the median:
We will then use the median to split the data in half. Next, we must find the median of the first half—or lower quartile—and then the median of the second half—or upper quartile:
Now we can solve for the difference between the upper quartile median and the lower quartile median:
Now that we have completed these operations, we should have calculated the following values:
Range:
Interquartile range:
As you can see, solving for the interquartile range requires more steps because it takes into account more of the data points; thus, given our options, interquartile range is best to use when solving for variability.
Example Question #4 : Understand The Shape Of A Data Set: Ccss.Math.Content.6.Sp.B.5d
Which of the following is the best measure of variability for the data in the provided table?
Either range or interquartile range
Neither range nor interquartile range
Interquartile range
Range
Interquartile range
In order to answer this question correctly, we need to solve for the range and the interquartile range.
To begin, let's sort the data from least to greatest:
Next, we can solve for the range. Remember, the range of a data set is the difference between the highest value and the lowest value in the set.
The range for this data set is
Now, we can solve for the interquartile range. Remember, the interquartile range is the difference between the upper quartile median and the lower quartile median. This means that we need to first calculate these two values. In order to do this, we need to split the data set into quartiles.
First, we will find the median:
We will then use the median to split the data in half. Next, we must find the median of the first half—or lower quartile—and then the median of the second half—or upper quartile:
Now we can solve for the difference between the upper quartile median and the lower quartile median:
Now that we have completed these operations, we should have calculated the following values:
Range:
Interquartile range:
As you can see, solving for the interquartile range requires more steps because it takes into account more of the data points; thus, given our options, interquartile range is best to use when solving for variability.
Example Question #5 : Understand The Shape Of A Data Set: Ccss.Math.Content.6.Sp.B.5d
Which of the following is the best measure of center for the data set in the provided table?
Mean
Median
Mode
Either mode or median
Mean
In order to answer this question correctly, we need to solve for the mean, median, and mode of this data set.
To begin, let's sort the data from least to greatest:
Now that our data is ordered from least to greatest, we can solve for the median:
Remember, the median is the middle most number when a data set is ordered from least to greatest.
The median for this data set is
Next, we can look at our data set to determine the mode:
There is no mode for this set because each value only appears once.
Remember, the mode is the number in a set that appears most often.
Finally, we can solve for the mean:
Remember, the mean of a data set is the average of the numbers in a data set.
The mean for this data set is
Now that we've done our calculation we should have:
Median:
Mode: None
Mean:
We are looking for the value that is representative of the center of the data; thus the mean would be the best measure because of how varied the set is. Normally, when a data set is varied the mean is normally the best measure of center.
Example Question #6 : Understand The Shape Of A Data Set: Ccss.Math.Content.6.Sp.B.5d
Which of the following is the best measure of variability for the data in the provided table?
Interquartile range
Range
Neither range nor interquartile range
Either range or interquartile range
Interquartile range
In order to answer this question correctly, we need to solve for the range and the interquartile range.
To begin, let's sort the data from least to greatest:
Next, we can solve for the range. Remember, the range of a data set is the difference between the highest value and the lowest value in the set.
The range for this data set is
Now, we can solve for the interquartile range. Remember, the interquartile range is the difference between the upper quartile median and the lower quartile median. This means that we need to first calculate these two values. In order to do this, we need to split the data set into quartiles.
First, we will find the median:
We will then use the median to split the data in half. Next, we must find the median of the first half—or lower quartile—and then the median of the second half—or upper quartile:
Now we can solve for the difference between the upper quartile median and the lower quartile median:
Now that we have completed these operations, we should have calculated the following values:
Range:
Interquartile range:
As you can see, solving for the interquartile range requires more steps because it takes into account more of the data points; thus, given our options, interquartile range is best to use when solving for variability.