Common Core: 5th Grade Math : Solve Real World Problems Involving Multiplication of Fractions and Mixed Numbers: CCSS.Math.Content.5.NF.B.6

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

A recipe calls for \(\displaystyle \frac{3}{4}\) of a cup of flour. If you double the recipe, how much flour do you need?

Possible Answers:

\(\displaystyle 2\frac{3}{4}\ cups\)

\(\displaystyle 1\frac{1}{2}\ cups\)

\(\displaystyle 1\frac{1}{3}\ cups\)

\(\displaystyle 1\frac{1}{4}\ cups\)

\(\displaystyle 1\ cup\)

Correct answer:

\(\displaystyle 1\frac{1}{2}\ cups\)

Explanation:

 

 

 

Example Question #2 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Sara collected \(\displaystyle \small \frac{2}{9}\) of a bag of leaves. Joe collected \(\displaystyle \small 7\) times as many bags as Sara. How many bags did Joe collect? 

Possible Answers:

\(\displaystyle \small \frac{5}{9}\)

\(\displaystyle \small \frac{9}{14}\)

\(\displaystyle \small \frac{9}{13}\)

\(\displaystyle \small 1\frac{5}{9}\)

\(\displaystyle \small 1\frac{3}{9}\)

Correct answer:

\(\displaystyle \small 1\frac{5}{9}\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle \small 1.\) Then we multiply like normal. 

\(\displaystyle \small \frac{7}{1}\times\frac{2}{9}=\frac{14}{9}\)

\(\displaystyle \small \frac{14}{9}=1\frac{5}{9}\) Because \(\displaystyle \small 9\) can go into \(\displaystyle \small 14\) only \(\displaystyle \small 1\) time and \(\displaystyle \small \frac{5}{9}\) is left over. 

Joe collected \(\displaystyle \small 1\frac{5}{9}\) bags of leaves. 

Example Question #3 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Alison collected \(\displaystyle \small \frac{1}{5}\) of a bag of leaves. Karen collected \(\displaystyle \small 6\) times as many bags as Alison. How many bags did Karen collect? 

Possible Answers:

\(\displaystyle \small \frac{3}{6}\)

\(\displaystyle \small 1\frac{1}{5}\)

\(\displaystyle \small 1\frac{1}{6}\)

\(\displaystyle \small \frac{6}{7}\)

\(\displaystyle \small \frac{2}{3}\)

Correct answer:

\(\displaystyle \small 1\frac{1}{5}\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle \small 1.\) Then we multiply like normal. 

\(\displaystyle \small \small \frac{6}{1}\times\frac{1}{5}=\frac{6}{5}\)

\(\displaystyle \small \frac{6}{5}=1\frac{1}{5}\) Because \(\displaystyle \small 5\) can go into \(\displaystyle 6\) only \(\displaystyle \small 1\) time and \(\displaystyle \small \frac{1}{5}\) is left over. 

Karen collected \(\displaystyle \small 1\frac{1}{5}\) bags of leaves.

Example Question #4 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Jess collected \(\displaystyle \small \frac{2}{3}\) of a bag of leaves. Sam collected \(\displaystyle 6\) times as many bags as Jess. How many bags did Sam collect? 

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle \small \frac{1}{9}\)

\(\displaystyle \small \frac{2}{18}\)

\(\displaystyle \small \frac{7}{5}\)

\(\displaystyle \small 4\)

Correct answer:

\(\displaystyle \small 4\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle \small 1.\) Then we multiply like normal. 

\(\displaystyle \small \frac{6}{1}\times\frac{2}{3}=\frac{12}{3}\)

\(\displaystyle \small \frac{12}{3}=4\) Because \(\displaystyle 3\) can go into \(\displaystyle 12\) an even \(\displaystyle 4\) times. 

Sam collected \(\displaystyle 4\) bags of leaves. 

Example Question #5 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Kara collected \(\displaystyle \small \frac{5}{7}\) of a bag of leaves. Drew collected \(\displaystyle 3\) times as many bags as Kara. How many bags did Drew collect? 

Possible Answers:

\(\displaystyle \small 2\frac{1}{7}\)

\(\displaystyle \small 1\frac{8}{7}\)

\(\displaystyle \small \frac{5}{21}\)

\(\displaystyle \small 1\frac{1}{7}\)

\(\displaystyle \small \frac{6}{10}\)

Correct answer:

\(\displaystyle \small 2\frac{1}{7}\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle \small 1.\) Then we multiply like normal. 

\(\displaystyle \small \frac{3}{1}\times\frac{5}{7}=\frac{15}{7}\)

\(\displaystyle \small \frac{15}{7}=2\frac{1}{7}\) Because \(\displaystyle 7\) can go into \(\displaystyle 15\) only \(\displaystyle \small 2\) times and \(\displaystyle \small \frac{1}{7}\) is left over. 

Drew collected \(\displaystyle \small 2\frac{1}{7}\) bags of leaves.

Example Question #6 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Jenny collected \(\displaystyle \small \frac{9}{11}\) of a bag of leaves. Brian collected \(\displaystyle 4\) times as many bags as Jenny. How many bags did Brian collect? 

Possible Answers:

\(\displaystyle \small \frac{44}{9}\)

\(\displaystyle \small 4\frac{3}{11}\)

\(\displaystyle \small \frac{9}{44}\)

\(\displaystyle \small 3\frac{3}{11}\)

\(\displaystyle \small \frac{5}{7}\)

Correct answer:

\(\displaystyle \small 3\frac{3}{11}\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle 1.\) Then we multiply like normal. 

\(\displaystyle \small \frac{4}{1}\times\frac{9}{11}=\frac{36}{11}\)

\(\displaystyle \small \frac{36}{11}=3\frac{3}{11}\) Because \(\displaystyle \small 11\) can go into \(\displaystyle \small 36\) only \(\displaystyle \small 3\) times and \(\displaystyle \small \frac{3}{11}\) is left over. 

Brian collected \(\displaystyle \small 3\frac{3}{11}\) bags of leaves. 

Example Question #7 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Liz collected \(\displaystyle \small \frac{3}{4}\) of a bag of leaves. Tammy collected \(\displaystyle \small 12\) times as many bags as Liz. How many bags did Tammy collect? 

Possible Answers:

\(\displaystyle \small 7\)

\(\displaystyle \small \frac{48}{3}\)

\(\displaystyle \small 9\)

\(\displaystyle \small 8\)

\(\displaystyle \small \frac{3}{48}\)

Correct answer:

\(\displaystyle \small 9\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle \small 1.\) Then we multiply like normal. 

\(\displaystyle \small \frac{12}{1}\times\frac{3}{4}=\frac{36}{4}\)

\(\displaystyle \small \frac{36}{4}=9\) Because \(\displaystyle \small 4\) can go into \(\displaystyle \small 36\) an even \(\displaystyle \small 9\) times. 

Tammy collected \(\displaystyle \small 9\) bags of leaves. 

Example Question #8 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Heather collected \(\displaystyle \small \frac{1}{2}\) of a bag of leaves. Matt collected \(\displaystyle 3\) times as many bags as Heather. How many bags did Matt collect? 

Possible Answers:

\(\displaystyle \small 1\frac{1}{2}\)

\(\displaystyle \small 1\)

\(\displaystyle \small 2\)

\(\displaystyle \small \frac{1}{6}\)

\(\displaystyle \small 1\frac{1}{3}\)

Correct answer:

\(\displaystyle \small 1\frac{1}{2}\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle \small 1.\) Then we multiply like normal. 

\(\displaystyle \small \frac{3}{1}\times\frac{1}{2}=\frac{3}{2}\)

\(\displaystyle \small \frac{3}{2}=1\frac{1}{2}\) Because \(\displaystyle 2\) can go into \(\displaystyle \small 3\) only \(\displaystyle \small 1\) time and \(\displaystyle \small \frac{1}2{}\) is left over. 

Matt collected \(\displaystyle \small 1\frac{1}2{}\) bags of leaves. 

Example Question #9 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Dave collected \(\displaystyle \small \frac{5}{7}\) of a bag of leaves. Wes collected \(\displaystyle \small 4\) times as many bags as Dave. How many bags did Wes collect? 

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 3\)

\(\displaystyle \small 2\frac{6}{7}\)

\(\displaystyle \small 3\frac{6}{7}\)

\(\displaystyle \small \frac{5}{28}\)

Correct answer:

\(\displaystyle \small 2\frac{6}{7}\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle \small 1.\) Then we multiply like normal. 

\(\displaystyle \small \frac{4}{1}\times \frac{5}{7}=\frac{20}{7}\)

\(\displaystyle \small \frac{20}{7}=2\frac{6}{7}\) Because \(\displaystyle \small 7\) can go into \(\displaystyle 20\) only \(\displaystyle 2\) times and \(\displaystyle \small \frac{6}{7}\) is left over. 

Wes collected \(\displaystyle \small 2\frac{6}{7}\) bags of leaves. 

Example Question #10 : Solve Real World Problems Involving Multiplication Of Fractions And Mixed Numbers: Ccss.Math.Content.5.Nf.B.6

Megan collected \(\displaystyle \small \frac{1}{3}\) of a bag of leaves. Sally collected \(\displaystyle 3\) times as many bags as Megan. How many bags did Sally collect? 

Possible Answers:

\(\displaystyle \small 1\frac{1}3{}\)

\(\displaystyle \small \frac{1}{2}\)

\(\displaystyle 1\)

\(\displaystyle \small \frac{1}{9}\)

\(\displaystyle \small \frac{2}{3}\)

Correct answer:

\(\displaystyle 1\)

Explanation:

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle 1.\) Then we multiply like normal. 

\(\displaystyle \small \small \frac{3}{1}\times\frac{1}{3}=\frac{3}{3}\)

\(\displaystyle \small \frac{3}{3}=1\) Because \(\displaystyle 3\) can go into \(\displaystyle \small 3\) an even \(\displaystyle \small 1\) time. 

Sally collected \(\displaystyle \small 1\) bag of leaves. 

Learning Tools by Varsity Tutors