Common Core: 5th Grade Math : Read and Write Decimals to Thousandths Using Base-Ten Numerals, Number Names, and Expanded Form: CCSS.Math.Content.5.NBT.A.3a

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #151 : Read And Write Decimals To Thousandths Using Base Ten Numerals, Number Names, And Expanded Form: Ccss.Math.Content.5.Nbt.A.3a

What number is eighty-three and four tenths?

 

Possible Answers:

\displaystyle 803.04

\displaystyle 803.4

\displaystyle 83.04

\displaystyle 83.004

\displaystyle 83.4

Correct answer:

\displaystyle 83.4

Explanation:

In number form, eighty-three and four tenths is \displaystyle 83.4. The "and" signifies the decimal, and " tenths" signifies the place value of the last decimal number. 

Example Question #1301 : Numbers And Operations

What number is ninety-three and five tenths?

 

Possible Answers:

\displaystyle 903.5

\displaystyle 93.05

\displaystyle 93.5

\displaystyle 903.05

\displaystyle 93.005

Correct answer:

\displaystyle 93.5

Explanation:

In number form, ninety-three and five tenths is \displaystyle 93.5. The "and" signifies the decimal, and " tenths" signifies the place value of the last decimal number. 

Example Question #1302 : Numbers And Operations

What number is thirteen and seven tenths?

 

Possible Answers:

\displaystyle 130.07

\displaystyle 103.7

\displaystyle 13.7

\displaystyle 13.007

\displaystyle 13.07

Correct answer:

\displaystyle 13.7

Explanation:

In number form, thirteen and seven tenths is \displaystyle 13.7. The "and" signifies the decimal, and " tenths" signifies the place value of the last decimal number. 

Example Question #1303 : Numbers And Operations

What number is sixteen and eight tenths?

 

Possible Answers:

\displaystyle 160.8

\displaystyle 106.8

\displaystyle 16.08

\displaystyle 16.008

\displaystyle 16.8

Correct answer:

\displaystyle 16.8

Explanation:

In number form, sixteen and eight and six tenths is \displaystyle 16.8. The "and" signifies the decimal, and " tenths" signifies the place value of the last decimal number. 

Example Question #1304 : Numbers And Operations

What number is twelve and six tenths?

 

Possible Answers:

\displaystyle 120.06

\displaystyle 12.06

\displaystyle 120.6

\displaystyle 12.006

\displaystyle 12.6

Correct answer:

\displaystyle 12.6

Explanation:

In number form, twelve and six tenths is \displaystyle 12.6. The "and" signifies the decimal, and " tenths" signifies the place value of the last decimal number. 

Example Question #152 : Read And Write Decimals To Thousandths Using Base Ten Numerals, Number Names, And Expanded Form: Ccss.Math.Content.5.Nbt.A.3a

Which answer choice is equivalent to 749.421?

Possible Answers:

\displaystyle 7\times 100+4\times 10+9\times 1+4\times \frac{1}{100}+2\times \frac{1}{1000}+1\times \frac{1}{10000}

\displaystyle 7\times 1000+4\times 100+9\times 10+4\times \frac{1}{10}+2\times \frac{1}{100}+1\times \frac{1}{1000}

\displaystyle 7\times 100+4\times 10+9\times 1+4\times (-1)+2\times(-10)+1\times (-100)

\displaystyle 7\times 100+4\times 10+9\times 1+4\times \frac{-1}{10}+2\times \frac{-1}{100}+1\times \frac{-1}{1000}

\displaystyle 7\times 100+4\times 10+9\times 1+4\times \frac{1}{10}+2\times \frac{1}{100}+1\times \frac{1}{1000}

Correct answer:

\displaystyle 7\times 100+4\times 10+9\times 1+4\times \frac{1}{10}+2\times \frac{1}{100}+1\times \frac{1}{1000}

Explanation:

 

 

 

Example Question #153 : Read And Write Decimals To Thousandths Using Base Ten Numerals, Number Names, And Expanded Form: Ccss.Math.Content.5.Nbt.A.3a

What is \displaystyle 2.37 in expanded form? 

 

Possible Answers:

\displaystyle 2\times1+3\times\left(\frac{1}{10}\right)+7\times\left(\frac{1}{1000}\right)

\displaystyle 2\times1+3\times\left(\frac{1}{10}\right)+7\times\left(\frac{1}{100}\right)

\displaystyle 2\times1+3\times\left(\frac{1}{10}\right)+7\times\left(\frac{1}{10}\right)

\displaystyle 2\times1+3\times\left(\frac{1}{100}\right)+7\times\left(\frac{1}{100}\right)

\displaystyle 2\times1+3\times\left(\frac{1}{100}\right)+7\times\left(\frac{1}{1000}\right)

Correct answer:

\displaystyle 2\times1+3\times\left(\frac{1}{10}\right)+7\times\left(\frac{1}{100}\right)

Explanation:

When we write a number in expanded form, we multiply each digit by its place value. 

\displaystyle 2 is in the ones place, so we multiply by \displaystyle 1

\displaystyle 2\times1=2

\displaystyle 3 is in the tenths place, so we multiply by \displaystyle \frac{1}{10}

\displaystyle 3\times\frac{1}{10}=.3

\displaystyle 7 is in the hundredths place, so we multiply by \displaystyle \frac{1}{100}.

\displaystyle 7\times\frac{1}{100}=.07

Then we add the products together to check our answer: 

\displaystyle \frac{\begin{array}[b]{r}2.00\\ +\ .30\\ .07 \end{array}}{ \ \ \space2.37}

Learning Tools by Varsity Tutors